首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface dilatational moduli of poly(vinyl acetate) (PVAc) film and blend films of PVAc and poly(n-hexyl isocyanate) (PHIC) were measured at the air-water interface. PVAc formed a film that was looser and also more stable against strain than the PHIC film. The apparent surface dilatational modulus and surface pressure of the blend films were superimposed on the lower concentration of PVAc, irrespective of the composition of PVAc. However, the additivity rule was not applicable to the apparent surface dilatational modulus and surface pressure. The scaling exponents of the apparent surface dilatational modulus against the added surface concentration decreased with an increase in the proportion of PVAc, suggesting that blend films gradually change from glass material to expanded films.  相似文献   

2.
A series of polymer blend/organoclay nanocomposite at a fixed blending ratio was prepared using equal ratio of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) via solvent casting method. With respect to nanoscale internal structure, we found that PMMA chains have better affinity with organoclay than PEO, based on the results from X-ray diffraction. Direct visualization via transmission electron microscopy (TEM) also supported the better affinity of PMMA with organoclay by indicating the existence of hybrid structures of mainly intercalated but with some exfoliated forms. The miscible nature of the blend and homogeneous dispersion state of layered silicate in the blend system were investigated via the microscopic fractured surface morphologies. From rheological measurements (storage and loss modulus), we discovered the role of the physical network structure between polymer and organoclay to be a main factor for the enhancement of elastic properties.  相似文献   

3.
The effects of supercritical carbon dioxide (SC CO2) fluids on the morphology and/or conformation of poly(ethylene oxide) (PEO) in PEO/poly(methyl methacrylate) (PMMA) blends were investigated by means of differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and Fourier transform infrared (FTIR). According to DSC data for a given blend, the melting enthalpy and, therefore, degree of crystallinity of PEO were increased, whereas the melting temperature of PEO was decreased, with SC CO2 treatment. The enhancement of PEO crystallization with SC CO2 treatment, as demonstrated by DSC data, was supported by WAXD data. According to FTIR quantitative analyses, before SC CO2 treatments, the conformation of PEO was transformed from helix to trans planar zigzag via blending with PMMA. This helix‐to‐trans transformation of PEO increased proportionally with increasing PMMA content, with around 0.7% helix‐to‐trans transformation per 1% PMMA incorporation into the blend. For a given blend upon SC CO2 treatments, the conformation of PEO was transformed from trans to helix. This trans‐to‐helix transformation of PEO decreased with increasing PMMA contents in the blends because of the presence of interactions between the two polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2479–2489, 2004  相似文献   

4.
Poly(2-methoxyethyl acrylate) (PMEA) exhibits excellent blood compatibility. To understand why such a surface functionality exists, the surface of PMEA should be characterized in detail, structurally and dynamically, under not only ambient conditions, but also in water. However, a thin film of PMEA supported on a solid substrate can be easily broken, namely it is dewetted. Our strategy to overcome this difficulty is to mix PMEA with poly(methyl methacrylate) (PMMA). Differential scanning calorimetry and cloud point measurements revealed that the PMEA/PMMA blend has a phase diagram with a lower critical solution temperature. The blend surface was also characterized by X-ray photoelectron spectroscopy in conjunction with microscopic observations. Although PMEA is preferentially segregated over PMMA at the blend surface due to its lower surface free energy, the extent of segregation in the as-prepared films was not sufficient to cover the surface. Annealing the blend film at an appropriate temperature, higher than the glass transition temperature and lower than the phase-separation temperature of the blend, enabled us to prepare a stable and flat surface that was perfectly covered with PMEA.  相似文献   

5.
Thermal oxidation of poly(ethylene oxide) (PEO) and its blends with poly(methyl methacrylate) (PMMA) were studied using oxygen uptake measurements. The rates of oxidation and maximum oxygen uptake contents were reduced as the content of PMMA was increased in the blends. The results were indicative of a stabilizing effect by PMMA on the oxidation of PEO. The oxidation reaction at 140°C was stopped at various stages and PMMA was separated from PEO and its molecular weights were measured by gel permeation chromatography (GPC). The decrease in the number-average molecular weight of PMMA was larger as the content of PEO increased in the blends. The visual appearance of the films suggested that phase separation did not occur after thermal oxidation. The activation energy for the rates of oxidation in the blends was slightly increased compared to pure PEO. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
Polymer–silicate nanocomposites based on poly (ethylene oxide), PEO, poly(methyl methacrylate), PMMA, and sodium montmorillonite clay were fabricated and characterized to investigate the effect of nanolayered silicates on segmental dynamics of PEO/PMMA blends. X‐ray results indicate the formation of an exfoliated morphology in the nanocomposites. At low silicate contents, an enhancement in segmental dynamics of blend nanocomposites and also PEO, minor component in blend, is observed at temperature region below blend glass transition. This result can be attributed to the improvement of the confinement effect of rigid PMMA matrix on the PEO chains by introducing a low amount of layered silicates. On the other hand, at high silicate contents, an enhancement in segmental dynamics of blend nanocomposites and PEO is observed at temperature region above blend glass transition. This behavior could be interpreted based on the reduction of monomeric friction between two polymer components, which can facilitate segmental motions of blend components in nanocomposite systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

7.
The photooxidative degradation of blends (in a full range of compositions) of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films is investigated using absorption spectroscopy (UV–visible and Fourier transform infrared) and atomic force microscopy (AFM). The amount of insoluble gel formed as a result of photocrosslinking is estimated gravimetrically. It is found that the PVC/PEO blendsí susceptibility to photooxidative degradation differs from that pure of the components and depends on the blend composition and morphology. Photoreactions such as degradation and oxidation are accelerated whereas dehydrochlorination is retarded in blends. The photocrosslinking efficiency in PVC/PEO blends is higher than in PVC; moreover, PEO is also involved in this process. AFM images showing the lamellar structure of semicrystalline PEO in the blend lead to the conclusion that the presence of PVC does not disturb the crystallization process of PEO. The changes induced by UV irradiation allow the observation of more of the distinct PEO crystallites. This is probably caused by recrystallization of short, more mobile chains in degraded PEO or by partial removal of the less stable amorphous phase from the film surface. These results confirm previous information on the miscibility of PVC with PEO. The mechanism of the interactions between the components and the blend photodegradation are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 585–602, 2004  相似文献   

8.
After determining the size dependent miscibility of binary polymer blend films using molecular dynamics simulation and thermodynamics, the size dependent glass transition temperatures Tg(w,D) of several polymer blend films in miscible ranges are determined by computer simulation and the Fox equation where w is the weight fraction of the second component and D denotes thickness of films. The Tg(w,D) function of a thin film can decrease or increase as D decreases depending on their surface or interface states. The computer simulation results are consistent with available experimental results and theoretical results for polymer blend films of PPO/PS [poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene] and stereoregular PMMA/PEO [poly(methyl methacrylate)/poly(ethylene oxide)]. The physical background of the above results is related to the root of mean square displacement of thin films in their different regions.  相似文献   

9.
Results of an investigation on the morphology, structure, isothermal crystallization, thermal behaviour and miscibility of poly(ethylene oxide) (PEO) based binary blends are reported. In particular poly(vinyl acetate)(PVAc), poly(methyl methacrylate) (PMMA) at different tacticity and poly(ethyl methacrylate) (PEMA) were added to PEO. It was found that with the only exception of isotactic poly(methyl methacrylate) (IPMMA), the addition of the above cited components causes a depression in both the spherulite growth rate and the overall kinetic rate constant. The experimental G and Kn were analyzed by means of the latest kinetic theory in order to determine the influence of composition on the process of surface secondary nucleation. The optical microscopy of thin films of the sample revealed that the blends crystallized with volume filling crystals at least up to 50/50 blend composition. The small angle X-ray scattering curves were analyzed using a recently developed methodology. The structural properties of the blends were attributed to the presence of the non crystallizable material in the interlamellar or interfibrillar regions of PEO. From the glass transition temperature it has been deduced that an homogeneous amorphous phase is present for all the blends except for the PEO/IPMMA amorphous system. For the system PEO/atactic poly(methyl methacrylate) (APMMA) the miscibility was also predicted by theoretical approaches.  相似文献   

10.
Biodegradable poly(butylene succinate) (PBS)/poly(ethylene oxide) (PEO) polymer blend film with compositional gradient in the film thickness direction was prepared using a method of interdiffusion across the interface between the PBS and PEO layers at a temperature above the melting points of both the component polymers. The miscibility between PBS and PEO was confirmed by observation of the glass transition temperature by differential scanning calorimetry. The compositional gradient structure of PBS/PEO was characterized by microscopic mapping measurement of Fourier transform infrared spectra and dynamic mechanical thermal analysis. Furthermore, a new method for confirming the crystalline/crystalline compositional gradient structure through observing the crystallization behavior by POM (polarized optical microscopy) was put forward. A continuous gradient of the spherulite size along the film thickness direction was succeessfully generated in the PBS/PEO blend film. The compositional gradient blend was found to have significantly improved physical properties that cannot be realized for pure PBS, pure PEO, and even their homogeneous miscible blend system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 368–377, 2005  相似文献   

11.
The plasticization of stereocomplex polylactide (scPLA) with poly(propylene glycol) (PPG) is described. The poly(L-lactide) (PLLA), poly(D-lactide) (PDLA) and PPG were completely blended in chloroform before film casting to prepare scPLA/PPG blend films. The PLLA/PDLA ratio was fixed at 50/50 (w/w). The PPG blending enhanced the stereocomplex formation of the scPLA films. The stereocomplex crystallinities of the scPLA films increased as the PPG blend ratio increased, the PPG molecular weight decreased and the PDLA molecular weight decreased. The PPG blending significantly decreased the T g and film transparency, and improved the elongation at break of the scPLA films. The results indicated that the PPG blending had an effect on the stereocomplexation and it improved the flexibility of the scPLA films.  相似文献   

12.
Fully-biodegradable bacterial poly(3-hydroxybutyrate) (PHB)/chemosynthetic poly(vinyl alcohol) (PVA) blend films with compositional gradient from one surface to the other surface of the films were prepared by a dissolution-diffusion technique. Three kinds of PVA samples, high- and low-molecular weight atactic PVA and highly syndiotactic PVA (s-PVA), were used in order to investigate the effects of molecular weight and tactic structure on the generation of compositional gradient. The solution of PHB in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), which is also a good solvent for PVA, was cast on the PVA film and then the solvent HFIP was evaporated. By selecting the optimum volume of solvent and the evaporation rate, the PHB/PVA blend film with compositional gradient was obtained. The formation of compositional gradient was confirmed by FT-IR microscopy and ATR-FT-IR analysis. The 50%/50% PHB/s-PVA blend film with a nearly ideal compositional gradient, that is, the composition of PHB (or PVA) in the film changing gradually from 100% at one surface to 0% at the other surface of the film was obtained by casting PHB/HFIP solution on to the s-PVA film. Positional dependence of the absorbance of C==O and OH stretching bands along the film thickness direction for the PHB/S-PVA cast films.  相似文献   

13.
利用悬挂滴方法研究了同分异构的直链(C16PB)和支链(C16GPB)十六烷基羟丙基羧酸甜菜碱的表面扩张流变性质,考察了时间、表面压、工作频率及体相浓度对扩张模量和相角的影响.研究发现,羟丙基甜菜碱分子在溶液表面上吸附时,整个亲水基团倾向于平铺在表面上,造成较高的表面扩张模量,表面膜性质由亲水基团取向变化等膜内过程控制.甜菜碱分子疏水烷基的支链化造成分子间相互作用增强,不仅能增大模量,而且在高浓度条件下出现动态模量的最大值现象,说明表面膜的强度与分子排布密切相关,并非单纯由表面分子浓度决定.  相似文献   

14.
An experimental study of the equilibrium properties and of the surface rheology of Langmuir monolayers of poly(methyl methacrylate) (PMMA) at the air/water interface has been carried out as a function of polymer concentration (Γ) and molecular weight (M(w)). Dilational and shear complex elasticity moduli covering a frequency range from 10(-3) to 0.2 Hz have been discussed. It was found that the air∕water interface behaves as a poor solvent for PMMA monolayers, thus suggesting that the polymer coils take collapsed soft-disks (pancakes) shape at the interface. The equilibrium and dynamic results suggest a fluid-to-soft-glass transition as the polymer concentration increases above a critical packing fraction at constant temperature. This two-dimensional transition is in agreement with results previously discussed for the dilational rheology of poly(4-hydroxystyrene) [F. Monroy, F. Ortega, R. G. Rubio, H. Ritacco, and D. Langevin, J. Chem. Phys. 95, 056103 (2005)]. Furthermore, the Γ-dependence of the relaxation dynamics of the monolayers suggests that the gel state may be considered as a fragile soft glass.  相似文献   

15.
In this paper, we report a novel synthesis of poly(ethylene oxide monooleate-block-DL-lactide) (MOPEO-PLA) in the presence of stannous 2-ethylhexanoate catalyst. By utilizing the surfactant property and the reactive double bond of the amphiphilic MOPEO-PLA, various characteristics of PLA microspheres, such as surface and internal structure, surface morphology, release property, and so on, may potentially be controlled. MOPEO-PLA was found to be hydrophobic enough to prevent loss by dissolution into aqueous solution, which is often a problem for MOPEO. Furthermore, the interfacial tension measurements of a MOPEO-PLA/toluene/water system revealed that MOPEO-PLA had a good surface activity almost equal to that of MOPEO. The MOPEO-PLA/PLA blend films were prepared by solvent casting on a water layer. Contact-angle measurements of MOPEO-PLA/PLA blend films confirmed that the hydrophilic PEO segments were selectivity accumulated at the oil/water interface. Moreover, the surface free energy on the 'water side' of the MOPEO-PLA/PLA blend films was increased because of the increase in polar components as a result of the ether bonds of the PEO segments. Schematic illustration of the adsorption property of a) MOPEO-PLA with a high-molecular-weight PLA segment and b) MOPEO-PLA with a low-molecular-weight PLA segment at an ethyl acetate/water interface.  相似文献   

16.
The photochemical stability of the blends of collagen and poly(ethylene oxide) PEO has been studied by Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy and viscosimetry. Surface properties before and after UV irradiation were observed using an optical microscope.Collagen and PEO were immiscible in diluted solution and only small interactions between the two components in the solid state were observed. New materials based on the blending of collagen and PEO that we obtained have a different photochemical stability than those of single components. In general, collagen/PEO blends are less stable under UV irradiation than pure collagen. The influence of PEO on the photochemical stability of collagen depends on the concentration of this polymer in the blend. Microscopic photographs show that the surface characteristics of thin films of collagen/PEO blends are not drastically altered after UV irradiation.  相似文献   

17.
The dynamic surface elasticity of aqueous solutions of poly(N-isopropylacrylamide) (pNIPAM) has been measured by the oscillating barrier and capillary wave methods as a function of time and concentration. While the real and imaginary parts of the surface elasticity almost did not change with the concentration, their kinetic dependencies proved to be nonmonotonic. Simultaneous measurements of the film thickness and adsorbed amount by null-ellipsometry showed that the pNIPAM adsorption can be divided into two steps corresponding to the formation of a concentrated narrow region close to the air phase and a region of tails and loops protruding into the bulk liquid. The local maximum of the elasticity can be observed in the course of the first step when the adsorbed macromolecules do not form long loops and tails. The results are in agreement with recent data on the nonequilibrium surface properties of solutions of other nonionic homopolymers and the theory of dilational surface viscoelasticity.  相似文献   

18.
The surface and interface morphologies of polystyrene (PS)/poly(methyl methacrylate) (PMMA) thin‐film blends and bilayers were investigated by means of atomic force microscopy (AFM) and X‐ray photoelectron spectroscopy. Spin‐coating a drop of a PS solution directly onto a PMMA bottom layer from a common solvent for both polymers yielded lateral domains that exhibited a well‐defined topographical structure. Two common solvents were used in this study. The structure of the films changed progressively as the concentration of the PS solution was varied. The formation of the blend morphology could be explained by the difference in the solubility of the two polymers in the solvent and the dewetting of PS‐rich domains from the PMMA‐rich phase. Films of the PS/PMMA blend and bilayer were annealed at temperatures above their glass‐transition temperatures for up to 70 h. All samples investigated with AFM were covered with PS droplets of various size distributions. Moreover, we investigated the evolution of the annealed PS/PMMA thin‐film blend and bilayer and gave a proper explanation for the formation of a relatively complicated interface inside a larger PS droplet. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 9–21, 2006  相似文献   

19.
The surface structures of three kinds of poly(ethylene oxide)‐segmented nylon (PEO‐Ny) molten films were investigated using a scanning electron microscopy (SEM), an electron spectroscopy for a chemical analysis (ESCA), and a static secondary ion mass spectrometry (SSIMS). The PEO‐Ny's used were high semicrystalline PEO‐segmented poly(iminosebacoyliminohexamethylene) (PEO‐Ny610), low semicrystalline PEO‐segmented poly(iminosebacoylimino‐m‐xylene) (PEO‐NyM10), and amorphous PEO‐segmented poly(iminoisophthaloyliminomethylene‐1,3‐cyclohexylenemethylene) (PEO‐NyBI). SEM observations show that the surfaces of the PEO‐Ny610 and PEO‐NyM10 films are composed of spherulite, and that PEO‐NyBI film has a smooth surface. The results of ESCA and SSIMS exhibit the significant enrichments of PEO segment at the surfaces of all the films regardless of the crystallinity. The reason for the enrichment of PEO segment was discussed in terms of the surface tension of the corresponding homopolymers in the melting state. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1045–1056, 2000  相似文献   

20.
起泡剂C12E8的表面流变学性质   总被引:7,自引:3,他引:4  
利用表面波技术研究起泡剂C_(12)E_8的表面流变学性质以及解释表面变形所产生的表面张力梯度的修复机理.实验结果表明,起泡剂C_(12)E_8的表面具有粘弹性质,其减胀模量与表面变形频率有关系.在低浓度时,随着溶液浓度的增加,表面吸附量的增加很高了膨胀模量.而在高浓度时,由于表面与溶液之间的扩散交换抵消了膨胀模量的增加,这导致膨胀模量随着溶液浓度增加反而降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号