首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用密度泛函方法对丙烯腈在Cu(111)面上不同吸附位的吸附状态进行了理论研究. 计算结果表明, 丙烯腈分子通过端位N原子立式吸附在金属铜表面为弱化学吸附, 其中桥位为较佳吸附位, 结合能为-40.16 kJ/mol; 丙烯腈分子和金属铜之间发生了电荷转移, N原子的孤对电子与金属形成σ共价键; 对丙烯腈分子结构变化进行了NBO分析, 解释了丙烯腈分子吸附后被活化的原因.  相似文献   

2.
一氧化碳共吸附法确定叔丁胺分子在Cu(111)表面的吸附位   总被引:1,自引:0,他引:1  
采用扫描隧道显微镜(STM)和密度泛函理论(DFT)研究了78 K时单个叔丁胺分子在Cu(111)表面的吸附位. 我们提出以共吸附的一氧化碳√3 ×√3 超结构为基底铜原子的标识方法, 确定了低覆盖度的叔丁胺分子在Cu(111)表面的吸附位为顶位. 而采用单个一氧化碳分子标识基底铜原子的位置, 同样得出了叔丁胺分子的吸附位为顶位. 此外, 还采用DFT计算叔丁胺分子在Cu(111)表面的优势吸附构型. 理论计算结果表明顶位吸附构型为能量最稳定的构型, 与实验结果相吻合.  相似文献   

3.
吕存琴  凌开成  王贵昌 《催化学报》2009,30(12):1269-1275
 采用广义梯度近似 (GGA) 的密度泛函理论 (DFT) 并结合平板模型, 研究了 CH4 在清洁 Pd(111) 及 O 改性的 Pd(111) 表面发生 C朒 键断裂的反应历程. 优化了裂解过程中反应物、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及反应的活化能. 结果表明, CH4 采用一个 H 原子指向表面的构型在 Pd(111) 表面的顶位吸附, CH3 的最稳定的吸附位置为顶位, OH, O 和 H 的最稳定吸附位置均为面心立方. CH4 在清洁 Pd(111) 表面裂解的活化能为 0.97 eV, 低于它在 O 原子改性 (O 没有参与反应) 的 Pd(111) 表面的活化能 1.42 eV, 说明表面氧原子抑制了 CH4 中 C朒 键的断裂. 当亚表面 O 原子和表面 O 原子 (O 参与反应) 共同存在时, C朒 键断裂的活化能为 0.72 eV, 低于只有表层氧存在时的活化能 (1.43 eV), 说明亚表面的 O 原子对 CH4 分子的活化具有促进作用. CH4 在 O 原子改性的 Pd(111) 表面裂解生成 CH3 和 H, 以及生成 CH3 和 OH 的反应活化能分别为 1.42 和 1.43 eV, 说明 CH4 在 O 原子改性的 Pd(111) 表面发生这两种反应的难易程度相当.  相似文献   

4.
采用基于密度泛函理论的第一性原理方法和平板模型研究了CH3SH分子在Cu(111)表面的吸附反应.系统地计算了S原子在不同位置以不同方式吸附的一系列构型, 第一次得到未解离的CH3SH分子在Cu(111)表面顶位上的稳定吸附构型,该构型吸附属于弱的化学吸附, 吸附能为0.39 eV. 计算同时发现在热力学上解离结构比未解离结构更加稳定. 解离的CH3S吸附在桥位和中空位之间, 吸附能为0.75-0.77 eV. 计算分析了未解离吸附到解离吸附的两条反应路径, 最小能量路径的能垒为0.57 eV. 计算结果还表明S―H键断裂后的H原子并不是以H2分子的形式从表面解吸附而是以与表面成键的形式存在. 通过比较S原子在独立的CH3SH分子和吸附状态下的局域态密度, 发现S―H键断裂后S原子和表面的键合强于未断裂时S原子和表面的键合.  相似文献   

5.
利用密度泛函理论系统研究了贵金属原子(Au、Pd、Pt和Rh)在CeO2(111)表面的吸附行为。结果表明,Au吸附在氧顶位最稳定,Pd、Pt倾向吸附于氧桥位,而Rh在洞位最稳定。当金属原子吸附在氧顶位时,吸附强度依次为Pt > Rh > Pd > Au。Pd、Pt与Rh吸附后在Ce 4f、O 2p电子峰间出现掺杂峰;Au未出现掺杂电子峰,其d电子峰与表面O 2p峰在-4~-1 eV重叠。态密度分析表明,Au吸附在氧顶位、Pd与Pt吸附在桥位、Rh吸附在洞位时,金属与CeO2(111)表面氧原子作用较强,这与Bader电荷分析结果相一致。  相似文献   

6.
利用密度泛函理论系统研究了贵金属原子(Au、Pd、Pt和Rh)在CeO2( 111)表面的吸附行为.结果表明,Au吸附在氧顶位最稳定,Pd、Pt倾向吸附于氧桥位,而Rh在洞位最稳定.当金属原子吸附在氧顶位时,吸附强度依次为Pt >Rh> Pd>Au.Pd、Pt与Rh吸附后在Ce 4 f、O2p电子峰间出现掺杂峰;Au未出现掺杂电子峰,其d电子峰与表面O2p峰在-4 -1 eV重叠.态密度分析表明,Au吸附在氧顶位、Pd与Pt吸附在桥位、Rh吸附在洞位时,金属与CeO2(111)表面氧原子作用较强,这与Bader电荷分析结果相一致.  相似文献   

7.
刁兆玉  于帅芹  王泽新  乔青安 《化学学报》2004,62(21):2136-2142
应用原子和表面簇合物相互作用的5参数Morse势方法(简称5-MP)构造了S-Ni表面簇合物体系的解析势函数.首先对S-Ni低指数表面体系进行了研究,并获得了全部临界点性质.计算结果表明:硫原子在Ni(100)面上的稳定吸附态为四重洞位,在Ni(111)面上,硫原子吸附于三重位,硫原子在Ni(110)面上的吸附位有所变化.第一与第二周期的原子在(110)面上的稳定吸附态大都为赝式三重位和长桥位,而硫原子却吸附在Ni(110)面的四重洞位.理论分析结果和实验推测结果符合得很好.同时,还对S-Ni(311)台阶面吸附体系进行了研究.理论结果表明:S-Ni(311)表面吸附体系只存在四重吸附态和hcp三重吸附态,fcc三重吸附态在和四重吸附态的竞争中完全湮灭.对于S-Ni表面吸附体系,理论结果给出S原子的表面吸附结合能和表面簇合物的粗糙度有关.结合能从小到大的顺序为(111)<(100)<(110)<(311).  相似文献   

8.
单原子合金是指活性金属原子分散在Cu、Ag或Au载体上所构成的催化剂,近年来已成为单原子催化研究中的一颗“新星”.单原子合金上孤立活性位点与载体金属的电子结构不同,具有奇异的电子结构,故通常表现出独特的催化行为.目前尚缺乏一种可靠的单原子合金催化特性描述符.本文系统地考察了甲烷、丙烷和乙苯在15种Rh、Ir、Ni、Pd和Pt掺杂Cu(111)、Ag(111)和Au(111)单原子合金上初始C-H键活化.密度泛函计算表明,烷基C-H键的活化能垒与d带中心和H原子吸附相关较差,而与反应能之间相关性较好.理论分析表明,C原子在顶位的吸附与C-H活化过渡态之间存在着轨道相互作用的相似性,不仅涉及到σ对■轨道给予,也涉及dxy/dyz轨道的π反馈.据此,C原子吸附能与甲烷、丙烷和乙苯C-H键活化能也具有很强的相关性(R2>0.9).  相似文献   

9.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

10.
N是金刚石中的主要杂质之一, 为了研究金刚石生长过程中杂质N对C电子结构转化的影响, 用密度泛函理论研究了Ni(111)表面上C与N共吸附的三个不等价模型, 同时建立了三个C吸附模型作为比较. 计算结果表明, N原子的出现使得吸附体系相对不稳定, 吸附原子之间的相互作用不能忽略; 通过比较相互作用能可以看出, 相同的吸附位下C-C相互作用比C-N 相互作用强. 通过比较不同模型中C原子分波态密度可以看出, N-C相互作用一定程度上增加了Ni的催化活性, 但是与C-C自身的相互作用比较起来效果并不明显. 吸附几何结构和分波态密度还表明, 当吸附的原子过于紧密以致占有同一个Ni(111)-(1×1)晶胞表面时, 就会形成CN化合物或者类石墨杂质.  相似文献   

11.
近几年来人们对甲醇在金属表面上的脱氢反应进行了大量的研究工作。实验表明:CH_3O和H_2CO都是反应中的稳定中间体。我们曾对CH_3O在Cu(111)和Pt(111)面上的化学吸附进行了理论研究。 实验表明吸附电正性钾原子和吸附电负性氧原子对甲醇在Ru(001)面上脱氢反应是不同的。Anton所做的光谱结果说明吸附氧原子能抑制H_2CO在Ru(001)面上的吸附和  相似文献   

12.
采用密度泛函理论(DFT)研究了氧吸附后Pt/Cu(001)表面合金的原子结构和表面性质. 计算结果表明, 在Pt/Cu(001)-p(2×2)-O表面最稳定结构中, 衬底表面原子层不发生再构, 氧原子吸附于4重对称的Pt原子谷位, 每个氧原子吸附能约为2.303 eV. 吸附结构的Cu—O和Pt—O键键长分别为0.202和0.298 nm, 氧原子的吸附高度ZCu—O约为0.092 nm. 吸附前后Pt/Cu(001)-1ML(monolayer)表面合金的表面功函数分别为4.678和5.355 eV. 吸附表面氧原子和衬底的结合主要来自氧原子2p轨道和衬底金属原子d轨道的杂化作用, 氧原子吸附形成的表面电子态主要位于费米能级以下约-2.7 eV 处.  相似文献   

13.
李艳秋  刘淑萍  郝策  王泽新  邱介山 《化学学报》2009,67(23):2678-2684
应用原子与表面簇合物相互作用的五参数Morse势(5-MP)方法对氢原子在Ni(111)表面和次表面以及Ni(211), (533)台阶面进行了系统研究, 得到了氢原子在上述各面的吸附位、吸附几何、结合能和本征振动频率. 计算结果表明, 在Ni(111)面上, 氢原子优先吸附在三重位, 随着覆盖度的增加会吸附在次表面八面体位和四面体位. Ni(211), (533)的最优先吸附位都是四重位, 当氢原子的覆盖度增大时占据(111)平台的三重吸附位. 靠近台阶面的吸附位受台阶和平台高度的影响很大. 此外, 我们计算了氢原子在各表面的不同吸附位的扩散势垒, 获得氢原子在各表面的最低能量扩散通道.  相似文献   

14.
吸附O的Cu(110)c(2×1)表面原子结构和电子态   总被引:4,自引:0,他引:4  
采用第一性原理的密度泛函理论方法计算了清洁Cu(110)表面和吸附O原子的Cu(110) c(2×1)表面的原子结构, 结构弛豫和电子结构, 得到了各种表面结构参数. 分别计算了O原子在Cu(110)表面三个可能吸附位置吸附后的能量, 并给出了能量最低的吸附位置上各层原子的弛豫特性和态密度. 结果表明O吸附后的Cu(110)表面有附加列(added-row)再构的特性, O原子吸附在最表层铜原子上方, 与衬底Cu原子的垂直距离为0.016 nm, 以氧分子为能量基准的吸附能为-1.94 eV; 同时由于Cu 3d- O 2p态的杂化作用使得低于费米能级5.5~6.0 eV的范围内出现了局域的表面态. 计算得到清洁的和氧吸附的Cu(110)表面的功函数分别为4.51 eV和4.68 eV. 电子态密度的结果表明:在Cu(110) c(2×1) 表面O吸附的结构下, 吸附O原子和金属衬底之间的结合主要是由于最表层Cu原子3d态和O原子2p态的相互作用.  相似文献   

15.
原子H在Cu(100)(111)(110)上的吸附扩散研究   总被引:2,自引:1,他引:1  
采用5-MP势方法,对原子氢在金属Cu的3个低指数面上的吸附特性,如吸附几何、吸附能、振动频率等以及吸附扩散势能面结构进行了比较系统的研究,计算结果显示低温低覆盖条件下,氢原子在Cu(110)表面上只存在赝式三重位和长桥位吸附态,没有短桥位吸附态,并且获得了实验和理论的支持.  相似文献   

16.
运用密度泛函理论中广义梯度近似(GGA)的PW91方法,结合周期性平板模型,探讨了NO分子在Cu3Pt(111)表面上不同吸附位的吸附行为.结果表明:NO分子以N端朝下方式吸附在top-Pt以及hcp1和fcc2位(分别为表面Cu2Pt和Cu3簇)的吸附模式最稳定,吸附能分别为101.8、124.5和118.1kJ·mol-1.对于hcp1和fcc2位的吸附,NO中的N原子分别与底物的Cu2Pt和Cu3簇成键.吸附前后的电荷布居、态密度和振动频率的分析结果表明,净电子从底物合金表面转移到NO,N—O键伸长,频率发生红移.合金Cu3Pt和纯贵金属Pt对NO的吸附性质相似.  相似文献   

17.
利用密度泛函方法, 模拟金属铜原子簇Cu14(9,4,1)的(100)表面, 对丙烯腈(CH2=CHCN)在Cu(100)面上不同吸附位的吸附状况进行了理论研究. 结果表明: 丙烯腈分子通过端位N原子垂直吸附在金属表面上为弱化学吸附, 部分电荷从丙烯腈分子转移至铜金属簇; 由N原子的孤对电子与金属铜形成弱σ共价键; 顶位是最佳吸附位, 吸附能为40.7391 kJ•mol-1, N原子与金属表面间的平衡距离为0.2279 nm; 其次为桥位和穴位, 吸附能分别为36.2513和30.2158 kJ•mol-1, 平衡距离为0.2194和0.2886 nm; 吸附后C≡N键的强度降低, 活化了丙烯腈分子. 化学吸附使体系的熵减小, 是由于丙烯腈分子的平动和转动因吸附而被限制.  相似文献   

18.
采用DFT/BLYP方法对NbC(001)和(111)面的电子结构进行研究。计算结果表明,对于NbC(001)表面,其表面态主要集中于费米能级(EF)下方约4.5eV附近区域,并以表面Nb原子和C原子为主要成分。O2分子在该表面吸附时,趋向于吸附在表面Nb原子上。对于NbC(111)表面,其表面态集中在EF下方0.02.0eV区域,靠近EF的态具有较高的表面活性,其主要成分为表面Nb原子的4dxz/dyz成分。上述结论与光电子能谱实验结果基本一致;但由于金属原子d电子数的差异导致NbC(111)表面态成分与类似的TiC化合物并不相同。  相似文献   

19.
采用广义梯度近似(GGA)密度泛函理论(DFT)的PW91方法结合周期性模型, 在DNP基组下, 利用Dmol3模块研究了CO和H2在真空和液体石蜡环境下在Cu(111)表面上不同位置的吸附. 计算结果表明, 溶剂化效应对H2和CO的吸附结构参数和吸附能的影响非常显著. 在液体石蜡环境下, H2平行吸附在Cu(111)表面是解离吸附, 而CO 和H2在两种环境下的垂直吸附都是非解离吸附. 相比真空环境吸附, 在液体石蜡环境中, Cu(111)吸附CO时, 溶剂化效应能够提高CO吸附的稳定性, 同时有利于CO的活化. 在真空中, H2只能以垂直方式或接近垂直方式吸附在Cu(111)表面. 当Cu(111)顶位垂直吸附H2, 相比真空环境吸附, 溶剂化效应能够提高H2吸附的稳定性, 但对H2的活化没有明显影响. Cu(111)表面的桥位或三重穴位(hcp和fcc)垂直吸附H2时, 溶剂化效应能明显提高H2的活化程度, 但降低H2的吸附稳定性; 在液体石蜡中, 当H2平行Cu(111)表面吸附时, 溶剂化效应使H—H键断裂, 一个H原子吸附在fcc位, 另一个吸附在hcp位.  相似文献   

20.
《物理化学学报》1992,8(3):313-320
用高分辨电子能量损失谱(HREELS~*)对CH_3CN(乙腈)及C_6H_5CN(苯基氰)在清洁与氧覆盖的Cu(111)及Pd(100)表面上的吸附及其反应进行了研究。从198 K时CH_3CN吸附在Cu(111)及Pd(100)表面上的高分辨电子能量损失谱(HREELS)中观察到v(C≡N)几乎消失, 并在195 meV处出现一个较弱的v(C=N)谱带, 表明CH_3CN在吸附过程中C≡N再杂化为C=N,C,N原子分别与金属表面原子键合并C=N平行于表面。从198 K时C_6H_5CN在Pd(100)及Cu(111)上的HREELS表明C_6H_5CN的环平面与CN平行于金属表面。在185K时C_6H_5CN在氧覆盖的Pd(100)表面上的HREELS与其在清洁表面上的相似。并未观察到覆盖氧增强了C_6H_5CN在Pd(100)上的吸附及其它效应。C_6H_5CN吸附在氧覆盖的Cu(111)表面上产生了C_6H_5CNO的特征谱带。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号