首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is to study the formation of spatial patterns in a predator–prey system with Tetranychus urticae as prey and Phytoseiulus persimilis as predator. Logistic Lotka–Volterra predator–prey equations are solved numerically with two different response functions, two initial conditions and one data set. The spatial patterns are generated by introducing diffusion-driven instability in the predator–prey system. Among all parameters involved in predator–prey equations, only the predator interference parameter is varied to generate diffusion-driven instability leading to spatial patterns of population density. Spatial patterns are further generated with the inclusion of prey-taxis in the predator–prey system. Routh–Hurwitz’s conditions for stability are used to create instability with prey-taxis in the system. It is shown that it is possible to generate spatial patterns with zero flux boundary conditions even in a smaller domain with a suitable value of the predator interference parameter or prey-taxis.  相似文献   

2.
This article studies a delayed singular prey–predator economic model with stochastic fluctuations, which is described by differential‐algebraic equations due to a economic theory. Local stability and Hopf bifurcation condition are described on the delayed singular prey–predator economic model within deterministic environment. It reveals the sensitivity of the model dynamics on gestation time delay. A phenomenon of Hopf bifurcation occurs as the gestation time delay increases through a certain threshold. Subsequently, a singular stochastic prey–predator economic model with time delay is obtained by introducing Gaussian white noise terms to the above deterministic model system. The fluctuation intensity of population and harvest effort are calculated by Fourier transforms method. Numerical simulations are carried out to substantiate these theory analysis. © 2013 Wiley Periodicals, Inc. Complexity 19: 23–29, 2014  相似文献   

3.
Leslie's method to construct a discrete two dimensional dynamical system dynamically consistent with the Lotka–Volterra type of competing two species ordinary differential equations is applied in a newly extended manner for the Lotka–Volterra prey–predator system which is structurally unstable. We show that, independently of the time step size, the derived discrete prey–predator system is dynamically consistent with the continuous counterpart, keeping the nature of neutrally stable periodic orbit. Further, we show that the extended method to construct the discrete prey–predator system can provide a dynamically consistent model also for the logistic Lotka–Volterra one.  相似文献   

4.
A predator–prey system with two impulses on the diseased prey is formulated and analyzed for the purpose of integrated pest management. The local and global stability of the susceptible pest‐eradication periodic solution, as well as the permanence of the system, are obtained under the sufficient conditions by means of Floquet's theory for impulsive differential equations. Finally, we interpret our mathematical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we propose a bioeconomic differential algebraic predator–prey model with Holling type II functional response and nonlinear prey harvesting. As the nonlinear prey harvesting is introduced, the proposed model displays a complex dynamics in the predator–prey plane. Taking into account of the economic factor, our predator–prey system is established by bioeconomic differential algebraic equations. The effect of economic profit on the proposed model is analyzed by viewing it as a bifurcation parameter. By jointly using the normal form of differential algebraic models and the bifurcation theory, the stability and bifurcations (singularity induced bifurcation, Hopf bifurcation) are discussed. These results obtained here reveal richer dynamics of the bioeconomic differential algebraic predator–prey model with nonlinear prey harvesting, and suggest a guidance for harvesting in the practical word. Finally, numerical simulations are given to demonstrate the results.  相似文献   

6.
In this work, a modified Holling–Tanner predator–prey model is analyzed, considering important aspects describing the interaction such as the predator growth function is of a logistic type; a weak Allee effect acting in the prey growth function, and the functional response is of hyperbolic type. Making a change of variables and time rescaling, we obtain a polynomial differential equations system topologically equivalent to the original one in which the non‐hyperbolic equilibrium point (0,0) is an attractor for all parameter values. An important consequence of this property is the existence of a separatrix curve dividing the behavior of trajectories in the phase plane, and the system exhibits the bistability phenomenon, because the trajectories can have different ω ? limit sets; as example, the origin (0,0) or a stable limit cycle surrounding an unstable positive equilibrium point. We show that, under certain parameter conditions, a positive equilibrium may undergo saddle‐node, Hopf, and Bogdanov–Takens bifurcations; the existence of a homoclinic curve on the phase plane is also proved, which breaks in an unstable limit cycle. Some simulations to reinforce our results are also shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A delayed predator–prey system with Holling type II functional response and stage structure for both the predator and the prey is investigated. By analyzing the corresponding characteristic equations, the local stability of each feasible equilibrium of the system is discussed, and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of the persistence theory for infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using suitable Lyapunov functions and the LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when both the predator–extinction equilibrium and the coexistence equilibrium do not exist, and that the predator–extinction equilibrium is globally stable when the coexistence equilibrium does not exist. Further, sufficient conditions are obtained for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with a cross-diffusion predator–prey system with a free boundary over a one-dimensional habitat. The free boundary shows the spreading front of the prey and predator which implies that the velocity of the expanding front is proportional to the gradients of the prey and predator. By the contraction mapping principle, \(L^{p}\) estimates and Schauder estimates of parabolic equations, the local and global existence and uniqueness of classical solutions are established for this system.  相似文献   

9.
In this paper, we have studied a prey–predator model living in a habitat that divided into two regions: an unreserved region and a reserved (refuge) region. The migration between these two regions is allowed. The interaction between unreserved prey and predator is Crowley–Martin‐type functional response. The local and global stability of the system is discussed. Further, the system is extended to incorporate the effect of time delay. Then the dynamical behavior of the system is analyzed, taking delay as a bifurcation parameter. The direction of Hopf bifurcation and the stability of the bifurcated periodic solution are determined with the help of normal form theory and centre manifold theorem. We have also discussed the influence of prey refuge on densities of prey and predator species. The analytical results are supplemented with numerical simulations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
The present paper deals with the problem of a classical predator–prey system with infection of prey population. A classical predator–prey system is split into three groups, namely susceptible prey, infected prey and predator. The relative removal rate of the susceptible prey due to infection is worked out. We observe the dynamical behaviour of this system around each of the equilibria and point out the exchange of stability. It is shown that local asymptotic stability of the system around the positive interior equilibrium ensures its global asymptotic stability. We prove that there is always a Hopf bifurcation for increasing transmission rate. To substantiate the analytical findings, numerical experiments have been carried out for hypothetical set of parameter values. Our analysis shows that there is a threshold level of infection below which all the three species will persist and above which the disease will be epidemic. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
This paper concerns with a new delayed predator–prey model with stage structure on prey, in which the immature prey and the mature prey are preyed by predator and the delay is the length of the immature stage. Mathematical analysis of the model equations is given with regard to invariance of non-negativity, boundedness of solutions, permanence and global stability and nature of equilibria. Our work shows that the stage structure on the prey is one of the important factors that affect the extinction of the predator, and the predation on immature prey is a cause of periodic oscillation of population and can make the behaviors of the system more complex. The predation on the immature and mature prey brings both positive and negative effects on the permanence of the predator, if ignore the predation on immature prey in the system, the stage-structure on prey brings only negative effect on the permanence of the predator.  相似文献   

12.
In recent years, the research on the diffusive predator–prey model has attracted much attention. In these models, the carrying capacity is considered as a constant. In 2013, H. M. Safuan investigated the system of a predator and prey that shares the same biotic resource, where the carrying capacity is a function of the time. The spatial component of ecological interactions has been recognized as an important factor. So, we will discuss the problem of the nonlinear diffusive predator–prey model with the same biotic resource. This model is the system of the nonlinear partial differential equations with zero-flux boundary condition. The main objective of the present paper is to investigate the existence and uniqueness of the solution of this model. In this paper, we also obtain that there is a unique solution of the nonlinear partial differential equations with Dirichlet boundary condition.  相似文献   

13.
The paper explores an eco‐epidemiological model of a predator–prey type, where the prey population is subject to infection. The model is basically a combination of S‐I type model and a Rosenzweig–MacArthur predator–prey model. The novelty of this contribution is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We explicitly separate the competition between non‐infected and infected individuals. This emergent carrying capacity is markedly different to the explicit carrying capacities that have been considered in many eco‐epidemiological models. We observed that different intra‐class and inter‐class competition can facilitate the coexistence of susceptible prey‐infected prey–predator, which is impossible for the case of the explicit carrying capacity model. We also show that these findings are closely associated with bi‐stability. The present system undergoes bi‐stability in two different scenarios: (a) bi‐stability between the planner equilibria where susceptible prey co‐exists with predator or infected prey and (b) bi‐stability between co‐existence equilibrium and the planner equilibrium where susceptible prey coexists with infected prey; have been discussed. The conditions for which the system is to be permanent and the global stability of the system around disease‐free equilibrium are worked out. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The main aim of this paper is to discuss some feature so‐called historic behavior of a discrete‐time Kolmogorov system of predator–prey interactions, which causes the nonexistence of the time averages.  相似文献   

15.
Many of the existing predator–prey models on stage structured populations are some ordinary differential equations (ODE) or models without a disturbing effect of human behavior. In reality, death of the juvenile during its immature stage and catching or poisoning for the prey or predator occur continuously. From this basic standpoint, we formulate a general and robust prey-dependent consumption predator–prey model with periodic harvesting (catching or poisoning) for the prey and stage structure for the predator with constant maturation time delay (through-stage time delay) and perform a systematic mathematical and ecological study. We show that the conditions for global attractivity of the ‘predator-extinction’ (‘predator-eradication’) periodic solution and permanence of the population of the model depend on time delay, so, we call it “profitless”. We also show that constant maturation time delay and impulsive catching or poisoning for the prey can bring great effects on the dynamics of system by numerical analysis. In this paper, the main feature is that we introduce time delay and pulse into the predator–prey (natural enemy–pest) model with age structure, exhibit a new modeling method which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest management.  相似文献   

16.
A diffusive predator–prey system with Ivlev-type functional response subject to Neumann boundary conditions is considered. Hopf and steady-state bifurcation analysis are carried out in detail. First, the stability of the positive equilibrium and the existence of spatially homogeneous and inhomogeneous periodic solutions are investigated by analysing the distribution of the eigenvalues. The direction and stability of Hopf bifurcation are determined by the normal form theory and the centre manifold reduction for partial functional differential equations and then steady-state bifurcation is studied. Finally, some numerical simulations are carried out for illustrating the theoretical results.  相似文献   

17.
In this paper, we investigate a class of predator–prey model with age structure and discuss whether the model can undergo Bogdanov–Takens bifurcation. The analysis is based on the normal form theory and the center manifold theory for semilinear equations with non-dense domain combined with integrated semigroup theory. Qualitative analysis indicates that there exist some parameter values such that this predator–prey model has an unique positive equilibrium which is Bogdanov–Takens singularity. Moreover, it is shown that under suitable small perturbation, the system undergoes the Bogdanov–Takens bifurcation in a small neighborhood of this positive equilibrium.  相似文献   

18.
A model for the spatio-temporal evolution of three biological species in a food chain model consisting of two competitive preys and one predator with intra-specific competition is considered. Besides diffusing, the predator species moves toward higher concentrations of a chemical substance produced by the prey. The prey, in turn, moves away from high concentrations of a substance secreted by the predators. The resulting reaction–diffusion system consists of three parabolic equations along with three elliptic equations describing the diffusion of the chemical substances. The local existence of nonnegative solutions is proved. Then uniform estimates in Lebesgue spaces are provided. These estimates lead to boundedness and global well-posedness for the system. Numerical simulations are presented and discussed.  相似文献   

19.
In this paper, we investigate a predator–prey model with Gompertz growth function and impulsive dispersal of prey between two patches. Using the dynamical properties of single‐species model with impulsive dispersal in two patches and comparison principle of impulsive differential equations, necessary and sufficient criteria on global attractivity of predator‐extinction periodic solution and permanence are established. Finally, a numerical example is given to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A theoretical eco‐epidemiological model of a prey–predator interaction system with disease in prey species is studied. Predator consumes both susceptible and infected prey population, but predator also feeds preferentially on many numerous species, which are over represented in the predator's diet. Equilibrium points of the system are determined, and the dynamic behaviour of the system is investigated around equilibrium points. Death rate of predator species is considered as a bifurcation parameter to examine the occurrence of Hopf bifurcation in the neighbourhood of the coexisting equilibria. Numerical simulations are carried out to support the analytical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号