共查询到20条相似文献,搜索用时 15 毫秒
1.
Nilay Akgnüllü Niyazi ahin Mehmet Sezer 《Numerical Methods for Partial Differential Equations》2011,27(6):1707-1721
In this study, a Hermite matrix method is presented to solve high‐order linear Fredholm integro‐differential equations with variable coefficients under the mixed conditions in terms of the Hermite polynomials. The proposed method converts the equation and its conditions to matrix equations, which correspond to a system of linear algebraic equations with unknown Hermite coefficients, by means of collocation points on a finite interval. Then, by solving the matrix equation, the Hermite coefficients and the polynomial approach are obtained. Also, examples that illustrate the pertinent features of the method are presented; the accuracy of the solutions and the error analysis are performed. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1707–1721, 2011 相似文献
2.
Mustafa Gülsu Mehmet Sezer 《Numerical Methods for Partial Differential Equations》2011,27(6):1628-1638
A numerical method based on the Taylor polynomials is introduced in this article for the approximate solution of the pantograph equations with constant and variable coefficients. Some numerical examples, which consist of the initial conditions, are given to show the properties of the method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27:1628–1638, 2011 相似文献
3.
We will propose a unified algebraic method to construct Jacobi elliptic function solutions to differential–difference equations (DDEs). The solutions to DDEs in terms of Jacobi elliptic functions sn, cn and dn have a unified form and can be presented through solving the associated algebraic equations. To illustrate the effectiveness of this method, we apply the algorithm to some physically significant DDEs, including the discrete hybrid equation, semi‐discrete coupled modified Korteweg–de Vries and the discrete Klein–Gordon equation, thereby generating some new exact travelling periodic solutions to the discrete Klein–Gordon equation. A procedure is also given to determine the polynomial expansion order of Jacobi elliptic function solutions to DDEs. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
4.
A fractional‐order Jacobi Tau method for a class of time‐fractional PDEs with variable coefficients 下载免费PDF全文
This paper presents a shifted fractional‐order Jacobi orthogonal function (SFJF) based on the definition of the classical Jacobi polynomial. A new fractional integral operational matrix of the SFJF is presented and derived. We propose the spectral Tau method, in conjunction with the operational matrices of the Riemann–Liouville fractional integral for SFJF and derivative for Jacobi polynomial, to solve a class of time‐fractional partial differential equations with variable coefficients. In this algorithm, the approximate solution is expanded by means of both SFJFs for temporal discretization and Jacobi polynomials for spatial discretization. The proposed tau scheme, both in temporal and spatial discretizations, successfully reduced such problem into a system of algebraic equations, which is far easier to be solved. Numerical results are provided to demonstrate the high accuracy and superiority of the proposed algorithm over existing ones. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
Ahmet Bekir Özkan Güner Burcu Ayhan 《Mathematical Methods in the Applied Sciences》2015,38(17):3807-3817
In this paper, the ‐expansion method is proposed to establish hyperbolic and trigonometric function solutions for fractional differential‐difference equations with the modified Riemann–Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential‐difference equation into its differential‐difference equation of integer order. We obtain the hyperbolic and periodic function solutions of the nonlinear time‐fractional Toda lattice equations and relativistic Toda lattice system. The proposed method is more effective and powerful for obtaining exact solutions for nonlinear fractional differential–difference equations and systems. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
Berna Bülbül Mustafa Gülsu Mehmet Sezer 《Numerical Methods for Partial Differential Equations》2010,26(5):1006-1020
The aim of this article is to present an efficient numerical procedure for solving nonlinear integro‐differential equations. Our method depends mainly on a Taylor expansion approach. This method transforms the integro‐differential equation and the given conditions into the matrix equation which corresponds to a system of nonlinear algebraic equations with unkown Taylor coefficients. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer program written in Maple10. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010 相似文献
7.
Hai‐chou Li 《Mathematical Methods in the Applied Sciences》2016,39(1):144-151
This paper applies Nevanlinna theory of value distribution to discuss existence of solutions of certain types of non‐linear differential‐difference equations such as (5) and (8) given in the succeeding paragraphs. Existence of solutions of differential equations and difference equations can be said to have been well studied, that of differential‐difference equations, on the other hand, have been paid little attention. Such mixed type equations have great significance in applications. This paper, in particular, generalizes the Rellich–Wittich‐type theorem and Malmquist‐type theorem about differential equations to the case of differential‐difference equations. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
This article analyzes the solution of the integrated forms of fourth‐order elliptic differential equations on a rectilinear domain using a spectral Galerkin method. The spatial approximation is based on Jacobi polynomials P (x), with α, β ∈ (?1, ∞) and n the polynomial degree. For α = β, one recovers the ultraspherical polynomials (symmetric Jacobi polynomials) and for α = β = ?½, α = β = 0, the Chebyshev of the first and second kinds and Legendre polynomials respectively; and for the nonsymmetric Jacobi polynomials, the two important special cases α = ?β = ±½ (Chebyshev polynomials of the third and fourth kinds) are also recovered. The two‐dimensional version of the approximations is obtained by tensor products of the one‐dimensional bases. The various matrix systems resulting from these discretizations are carefully investigated, especially their condition number. An algebraic preconditioning yields a condition number of O(N), N being the polynomial degree of approximation, which is an improvement with respect to the well‐known condition number O(N8) of spectral methods for biharmonic elliptic operators. The numerical complexity of the solver is proportional to Nd+1 for a d‐dimensional problem. This operational count is the best one can achieve with a spectral method. The numerical results illustrate the theory and constitute a convincing argument for the feasibility of the method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009 相似文献
9.
《Mathematical Methods in the Applied Sciences》2018,41(8):3155-3174
In this paper, a collocation spectral numerical algorithm is presented for solving nonlinear systems of fractional partial differential equations subject to different types of conditions. A proposed error analysis investigates the convergence of the mentioned algorithm. Some numerical examples confirm the efficiency and accuracy of the method. 相似文献
10.
Mohammed K. Almoaeet Mostafa Shamsi Hassan Khosravian‐Arab Delfim F. M. Torres 《Mathematical Methods in the Applied Sciences》2019,42(10):3465-3480
We present the method of lines (MOL), which is based on the spectral collocation method, to solve space‐fractional advection‐diffusion equations (SFADEs) on a finite domain with variable coefficients. We focus on the cases in which the SFADEs consist of both left‐ and right‐sided fractional derivatives. To do so, we begin by introducing a new set of basis functions with some interesting features. The MOL, together with the spectral collocation method based on the new basis functions, are successfully applied to the SFADEs. Finally, four numerical examples, including benchmark problems and a problem with discontinuous advection and diffusion coefficients, are provided to illustrate the efficiency and exponentially accuracy of the proposed method. 相似文献
11.
The convergence and stability analysis of the Jacobi collocation method for solving nonlinear fractional differential equations with integral boundary conditions 下载免费PDF全文
In this paper, we apply the Jacobi collocation method for solving nonlinear fractional differential equations with integral boundary conditions. Due to existence of integral boundary conditions, after reformulation of this equation in the integral form, the method is proposed for solving the obtained integral equation. Also, the convergence and stability analysis of the proposed method are studied in two main theorems. Furthermore, the optimum degree of convergence in the L2 norm is obtained for this method. Furthermore, some numerical examples are presented in order to illustrate the performance of the presented method. Finally, an application of the model in control theory is introduced. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
Mehmet Sezer Salih Yalçinbaş 《Numerical Methods for Partial Differential Equations》2010,26(3):596-611
In this article, a collocation method is developed to find an approximate solution of higher order linear complex differential equations with variable coefficients in rectangular domains. This method is essentially based on the matrix representations of the truncated Taylor series of the expressions in equation and their derivates, which consist of collocation points defined in the given domain. Some numerical examples with initial and boundary conditions are given to show the properties of the method. All results were computed using a program written in scientific WorkPlace v5.5 and Maple v12. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010 相似文献
13.
High‐order numerical solution of second‐order one‐dimensional hyperbolic telegraph equation using a shifted Gegenbauer pseudospectral method 下载免费PDF全文
Kareem T. Elgindy 《Numerical Methods for Partial Differential Equations》2016,32(1):307-349
We present a high‐order shifted Gegenbauer pseudospectral method (SGPM) to solve numerically the second‐order one‐dimensional hyperbolic telegraph equation provided with some initial and Dirichlet boundary conditions. The framework of the numerical scheme involves the recast of the problem into its integral formulation followed by its discretization into a system of well‐conditioned linear algebraic equations. The integral operators are numerically approximated using some novel shifted Gegenbauer operational matrices of integration. We derive the error formula of the associated numerical quadratures. We also present a method to optimize the constructed operational matrix of integration by minimizing the associated quadrature error in some optimality sense. We study the error bounds and convergence of the optimal shifted Gegenbauer operational matrix of integration. Moreover, we construct the relation between the operational matrices of integration of the shifted Gegenbauer polynomials and standard Gegenbauer polynomials. We derive the global collocation matrix of the SGPM, and construct an efficient computational algorithm for the solution of the collocation equations. We present a study on the computational cost of the developed computational algorithm, and a rigorous convergence and error analysis of the introduced method. Four numerical test examples have been carried out to verify the effectiveness, the accuracy, and the exponential convergence of the method. The SGPM is a robust technique, which can be extended to solve a wide range of problems arising in numerous applications. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 307–349, 2016 相似文献
14.
Nurcan Baykus Mehmet Sezer 《Numerical Methods for Partial Differential Equations》2011,27(5):1327-1339
In this study, a practical matrix method is presented to find an approximate solution for high‐order linear Fredholm integro‐differential equations with piecewise intervals under the initial boundary conditions in terms of Taylor polynomials. The method converts the integro differential equation to a matrix equation, which corresponds to a system of linear algebraic equations. Error analysis and illustrative examples are included to demonstrate the validity and applicability of the technique. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010 27: 1327–1339, 2011 相似文献
15.
Mehmet Sezer Mustafa Gülsu Bekir Tanay 《Numerical Methods for Partial Differential Equations》2011,27(5):1130-1142
A collocation method to find an approximate solution of higher‐order linear ordinary differential equation with variable coefficients under the mixed conditions is proposed. This method is based on the rational Chebyshev (RC) Tau method and Taylor‐Chebyshev collocation methods. The solution is obtained in terms of RC functions. Also, illustrative examples are included to demonstrate the validity and applicability of the technique, and performed on the computer using a program written in maple9. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1130–1142, 2011 相似文献
16.
Roumen Anguelov Jean M.‐S. Lubuma Froduald Minani 《Mathematical Methods in the Applied Sciences》2010,33(1):41-48
A usual way of approximating Hamilton–Jacobi equations is to couple space finite element discretization with time finite difference discretization. This classical approach leads to a severe restriction on the time step size for the scheme to be monotone. In this paper, we couple the finite element method with the nonstandard finite difference method, which is based on Mickens' rule of nonlocal approximation. The scheme obtained in this way is unconditionally monotone. The convergence of the new method is discussed and numerical results that support the theory are provided. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
17.
Şuayip Yüzbaşi Niyazi Şahin Mehmet Sezer 《Mathematical Methods in the Applied Sciences》2012,35(10):1126-1139
In this paper, a collocation method is presented to find the approximate solution of high‐order linear complex differential equations in rectangular domain. By using collocation points defined in a rectangular domain and the Bessel polynomials, this method transforms the linear complex differential equations into a matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Bessel coefficients. The proposed method gives the analytic solution when the exact solutions are polynomials. Numerical examples are included to demonstrate the validity and applicability of the technique and the comparisons are made with existing results. The results show the efficiency and accuracy of the present work. All of the numerical computations have been performed on a computer using a program written in MATLAB v7.6.0 (R2008a). Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
Sunil Kumar Bayya Venkatesulu Rathish Kumar Johannes Hendrikus Maria Ten Thije Boonkkamp 《Numerical Methods for Partial Differential Equations》2019,35(2):790-804
In this study, we investigate the concept of the complete flux (CF) obtained as a solution to a local boundary value problem (BVP) for a given parabolic singularly perturbed differential‐difference equation (SPDDE) with modified source term to propose an efficient complete flux‐finite volume method (CF‐FVM) for parabolic SPDDE which is μ‐ and ?‐uniform method where μ, ? are shift and perturbation parameters, respectively. The proposed numerical method is shown to be consistent, stable, and convergent and has been successfully implemented on three test problems. 相似文献
19.
Yi Li‐jun Liang Zi‐qiang Wang Zhong‐qing 《Mathematical Methods in the Applied Sciences》2013,36(18):2476-2491
A Legendre–Gauss–Lobatto spectral collocation method is introduced for the numerical solutions of a class of nonlinear delay differential equations. An efficient algorithm is designed for the single‐step scheme and applied to the multiple‐domain case. As a theoretical result, we obtain a general convergence theorem for the single‐step case. Numerical results show that the suggested algorithm enjoys high‐order accuracy both in time and in the delayed argument and can be implemented in a robust and efficient manner. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.
In this continuing paper of (Zhu and Qiu, J Comput Phys 318 (2016), 110–121), a new fifth order finite difference weighted essentially non‐oscillatory (WENO) scheme is designed to approximate the viscosity numerical solution of the Hamilton‐Jacobi equations. This new WENO scheme uses the same numbers of spatial nodes as the classical fifth order WENO scheme which is proposed by Jiang and Peng (SIAM J Sci Comput 21 (2000), 2126–2143), and could get less absolute truncation errors and obtain the same order of accuracy in smooth region simultaneously avoiding spurious oscillations nearby discontinuities. Such new WENO scheme is a convex combination of a fourth degree accurate polynomial and two linear polynomials in a WENO type fashion in the spatial reconstruction procedures. The linear weights of three polynomials are artificially set to be any random positive constants with a minor restriction and the new nonlinear weights are proposed for the sake of keeping the accuracy of the scheme in smooth region, avoiding spurious oscillations and keeping sharp discontinuous transitions in nonsmooth region simultaneously. The main advantages of such new WENO scheme comparing with the classical WENO scheme proposed by Jiang and Peng (SIAM J Sci Comput 21 (2000), 2126–2143) are its efficiency, robustness and easy implementation to higher dimensions. Extensive numerical tests are performed to illustrate the capability of the new fifth WENO scheme. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1095–1113, 2017 相似文献