首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report through‐space (TS) 19F–19F coupling for ortho‐fluoro‐substituted Z ‐azobenzenes. The magnitude of the TS‐coupling constant (TSJFF) ranged from 2.2–5.9 Hz. Using empirical formulas reported in the literature, these coupling constants correspond to non‐bonded F–F distances (dFF) of 3.0–3.5 Å. These non‐bonded distances are significantly smaller than those determined by X‐ray crystallography or density functional theory, which argues that simple models of 19F–19F TS spin–spin coupling solely based dFF are not applicable. 1H, 13C and 19F data are reported for both the E and Z isomers of ten fluorinated azobenzenes. Density functional theory [B3YLP/6‐311++G(d,p)] was used to calculate 19F chemical shifts, and the calculated values deviated 0.3–10.0 ppm compared with experimental values. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor–protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable 19F chemical‐shift predictions to deduce ligand‐binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the 19F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein–inhibitor conformations as well as monomeric and dimeric inhibitor–protein complexes, thus rendering it the largest computational study on chemical shifts of 19F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area.  相似文献   

3.
The spectra of A2BC spin systems provided by the 19F nuclei in cis (RO) (MeO)TeF4 and (RO) (Me2N)TeF4 (R = Me, Et, Pr, i-Pr) have been recorded and analysed. The geminal coupling constants 2J(F,F) range from 137–174 Hz and trends in the 19F chemical shifts permit complete assignment of the resonances. Stereospecific coupling between 19F and the protons of the N-methylamino groups is also observed.  相似文献   

4.
The conformation of [bis‐(N,N′‐difluoroboryl)]‐3,3′‐diethyl‐4,4′,8,8′,9,9′,10,10′‐octamethyl‐2,2′‐bidipyrrin (1) in solution was studied by analyzing the 13C? 19F and 19F? 19F through‐space spin–spin couplings. The 1H and 13C NMR spectra were assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single‐quantum correlation (HSQC), and heteronuclear multiple‐bond correlation (HMBC) experiments. The 19F spectrum of 1 was compared with that of 2‐ethyl‐1,3,5,6,7‐pentamethyl‐4,4‐difluoro‐4‐bor‐3a,4a‐diaza‐s‐indacen (2). The 19F? 19F through‐space spin? spin coupling in 1 was thus assigned and the coupling constant was obtained by simulating the coupling patterns. The obtained conformation of 1 was compared with those of the known complexes [bis‐(N,N′‐difluoroboryl)]‐3,3′,8,8′,9,9′‐hexaethyl‐4,4′,10,10′‐tetramethyl‐6,6′‐(4‐methylphenyl)‐2,2′‐bidipyrrin (3)and [bis‐(N,N′‐difluoroboryl)]‐9,9′‐diethyl‐4,4′,8,8′,10,10′‐hexamethyl‐3,3′‐bis(methoxycarbonylethyl)‐2,2′‐bidipyrrin (4). The conformational dynamics of 1, 3, and 4 was surveyed by observing the temperature dependence of the through‐space coupling constants between 253 and 333 K. The 13C? 19F and 19F? 19F through‐space spin–spin couplings thus confirm similar conformations of different BisBODIPYs in solution in contrast to earlier findings in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Proteorhodopsin (PR) is a light‐driven proton pump found in near‐surface marine γ‐proteobacteria. The green absorbing variant has three cysteines at positions 107, 156 and 175. We probed the accessibility of these residues by 19F‐MAS NMR. For this purpose, an efficient but simple protocol for chemical fluorine labeling of accessible cysteines in membrane proteins was established. This one‐step reaction was applied to detergent‐solubilized PR before reconstitution into phospholipids. All three cysteines could be labeled and showed distinct 19F chemical shifts with different integral intensities. The accessibility of these cysteines is discussed in the context of a homology model. With the chemical cysteine labeling procedure shown here, an attractive option for site‐directed solid‐state NMR studies on other membrane proteins is offered due to the high intrinsic sensitivity of 19F‐MAS NMR.  相似文献   

6.
The configuration of certain trifluoromethylated functional dienoates, aryldienoates and trienoates is presented by the measurement of their 13C NMR and 19F NMR chemical shifts, and their 3 J(C–F), 4J(H–F) and through‐space 5J(H–F) coupling constants. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The characterization of protein–ligand interaction modes becomes recalcitrant in the NMR intermediate exchange regime as the interface resonances are broadened beyond detection. Here, we determined the 19F low‐populated bound‐state pseudocontact shifts (PCSs) of mono‐ and di‐fluorinated inhibitors of the BRM bromodomain using a highly skewed protein/ligand ratio. The bound‐state 19F PCSs were retrieved from 19F chemical exchange saturation transfer (CEST) in the presence of the lanthanide‐labeled protein, which was termed the 19F PCS‐CEST approach. These PCSs enriched in spatial information enabled the identification of best‐fitting poses, which agree well with the crystal structure of a more soluble analog in complex with the BRM bromodomain. This approach fills the gap of the NMR structural characterization of lead‐like inhibitors with moderate affinities to target proteins, which are essential for structure‐guided hit‐to‐lead evolution.  相似文献   

8.
Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1H‐19F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1H detection, plus both 1H?13C cross polarization and 1H?19F cross polarization detection schemes. This 1H‐19F REDOR‐filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR‐based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR‐filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.  相似文献   

9.
The effects of electron irradiation on the molecular chemical structure, conformation, mobility, and phase transition of vinylidene fluoride (VDF) and trifluoroethylene (TrFE) copolymer have been investigated with variable‐temperature, solid‐state 19F nuclear magnetic resonance (NMR). It has been found that electron irradiation converts all‐trans conformations of both VDF‐rich and TrFE‐containing segments into dynamically mixed trans–gauche conformations accompanied by a simultaneous ferroelectric‐to‐paraelectric (or amorphous) transition. The variable‐temperature 19F magic‐angle‐spinning spectra results show that the paraelectric phase melts at much lower temperatures in irradiated films than in an unirradiated sample. Moreover, 19F NMR relaxation data (spin–lattice relaxation times in both the laboratory and rotating frames) reveal that electron irradiation enhances the molecular motion in paraelectric regions, whereas the molecular motion in a high‐temperature amorphous melt (>100 °C) is more constrained in irradiated films. Besides these physical changes, electron irradiation also induces the formation of several CF3 groups. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1714–1724, 2006  相似文献   

10.
The determination and complete assignment of the 13C? 19F coupling constants and 13C chemical shifts for 15 monofluoro derivatives of nine polycyclic aromatic hydrocarbons are reported. Fluorine substitutent effects on the 13C chemical shifts are given and their regular behaviour, making comparisons between different compounds possible, is discussed. The numerical values of the 13C? 19F long range coupling constants are found, with a few exceptions, to decrease in an alternating manner along the periphery of the molecules. In several cases the signs of the coupling constants have been determined. It appears that the signs alternate, but additional evidence is required. The magnitudes of different types of coupling constants are discussed in terms of steric and electronic effects. CNDO/2 and INDO calculations of the 13C? 19F coupling constants in the fluoronaphthalenes have been performed using the ‘sum-over-states’ method with the aim of examining the orbital and spin–dipole contributions to the various couplings.  相似文献   

11.
The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor–protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable 19F chemical-shift predictions to deduce ligand-binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the 19F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein–inhibitor conformations as well as monomeric and dimeric inhibitor–protein complexes, thus rendering it the largest computational study on chemical shifts of 19F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area.  相似文献   

12.
The 31P chemical shift (CS) tensors of the 1,3,2‐diazaphospholenium cation 1 and the P‐chloro‐1,3,2‐diazaphospholenes 2 and 3 and the 31P and 19F CS tensors of the P‐fluoro‐1,3,2‐diazaphospholene 4 were characterized by solid‐state 31P and 19F NMR studies and quantum chemical model calculations. The computed orientation of the principal axes system of the 31P and 19F CS tensors in the P‐fluoro compound was found to be in good agreement with experimentally derived values obtained from evaluation of P–F dipolar interactions. A comparison of the trends in the chemical shifts of 1 – 4 with further available literature data confirms that the unique high shielding of δ11 in the cation 1 can be related to the effective π‐conjugation in the five‐membered heterocycle, and that a further systematic decrease in δ11 for the P‐halogen derivatives 2 – 4 is attributable to the increased perturbation of the π‐electron distribution by interaction with the halide donor. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Aldehyde (δCH) and enolic (δOH) proton chemical shifts, the corresponding spin–spin coupling constants (JCH,OH) and the 13C chemical shifts (δC) have been measured for three cyclic β-ketoaldehydes as a function of temperature. A tautomeric equilibrium has been shown to exist between the aldo–enol ( A ) and hydroxymethylene ketone ( B ) forms. The chemical shifts δCH δOH and δC for the two pure tautomeric forms A and B have been calculated. The enthalpy changes ΔH in the tautomeric process A ? B and the percentages of the tautomeric forms have been determined.  相似文献   

14.
We present the access to [5‐19F, 5‐13C]‐uridine and ‐cytidine phosphoramidites for the production of site‐specifically modified RNAs up to 65 nucleotides (nts). The amidites were used to introduce [5‐19F, 5‐13C]‐pyrimidine labels into five RNAs—the 30 nt human immunodeficiency virus trans activation response (HIV TAR) 2 RNA, the 61 nt human hepatitis B virus ? (hHBV ?) RNA, the 49 nt SAM VI riboswitch aptamer domain from B. angulatum, the 29 nt apical stem loop of the pre‐microRNA (miRNA) 21 and the 59 nt full length pre‐miRNA 21. The main stimulus to introduce the aromatic 19F–13C‐spin topology into RNA comes from a work of Boeszoermenyi et al., in which the dipole‐dipole interaction and the chemical shift anisotropy relaxation mechanisms cancel each other leading to advantageous TROSY properties shown for aromatic protein sidechains. This aromatic 13C–19F labeling scheme is now transferred to RNA. We provide a protocol for the resonance assignment by solid phase synthesis based on diluted [5‐19F, 5‐13C]/[5‐19F] pyrimidine labeling. For the 61 nt hHBV ? we find a beneficial 19F–13C TROSY enhancement, which should be even more pronounced in larger RNAs and will facilitate the NMR studies of larger RNAs. The [19F, 13C]‐labeling of the SAM VI aptamer domain and the pre‐miRNA 21 further opens the possibility to use the biorthogonal stable isotope reporter nuclei in in vivo NMR to observe ligand binding and microRNA processing in a biological relevant setting.  相似文献   

15.
Bis‐C‐pivot macrocycles containing aminophosphonate functions ( 5–10 ) have been synthesized and characterized by elemental analysis, FTIR, MS, 1D 1H, 13C and 31P NMR, and 2D HETCOR techniques. The phosphorylation reaction of dibenzo‐bis‐imino crown ethers ( 1–4 ) with dimethyl and diethyl phosphite used here has the potential to provide bis‐C‐pivot macrocycles ( 5–10 ), which possess two stereogenic C‐centers giving rise to diastereoisomers (meso and racemic). Detailed spectral assignments for the meso and racemic forms of the compounds are reported on the basis of chemical shifts, signal intensities, spin–spin coupling constants, and splitting patterns. The bis‐C‐pivot macrocycles ( 5–10 ) may serve as a potential new class of supramolecular host molecules.  相似文献   

16.
Magnetization, optical absorbance, and 19F NMR spectra of Nafion transparent films as received and doped with Mn2+, Co2+, Fe2+, and Fe3+ ions with and without treatment in 1H‐1,2,4‐triazole (trz) have been studied. Doping of Nafion with Fe2+ and Co2+ and their bridging to nitrogen of triazole yields a hybrid self‐assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high‐spin (HS) and low‐spin (LS) states in Nafion‐Fe2+‐trz and Nafion‐Co2+‐trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS ? LS, ~220 K, observed for Nafion‐Fe2+‐trz has a rate of ~6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe2+ materials. Selective response of 19F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of 19F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt‐Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self‐assembling magnetically and optically active nanoscale networks. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 129–138, 2012  相似文献   

17.
The wave functions for calculating gas phase 19F chemical shifts were optimally selected using the factorial design as a multivariate technique. The effects of electron correlation, triple-ξ valance shell, diffuse function, and polarization function on calculated 19F chemical shifts were discussed. It is shown that of the four factors, electron correlation and the polarization functions affect the results significantly. B3LYP/6-31 + G(df,p) wave functions have been proposed as the best and the most efficient level of theory for calculating 19F chemical shifts. An additional series of fluoro compounds were used as a test set and their predicted 19F chemical shifts values confirmed the validity of the approaches.  相似文献   

18.
Through‐space 19F–15N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The 19F–15N coupling constants were measured at natural abundance using a spin‐state selective indirect‐detection pulse sequence. As 15N‐labelled proteins are routinely synthesized for NMR studies, through‐space 19F–15N couplings have the potential to probe the stereochemistry of these proteins by 19F labelling of some amino acids or can reveal the site of docking of fluorine‐containing drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The 15N and 13C chemical shifts of 6‐(fluoro, chloro, bromo, and iodo)purine 2′‐deoxynucleoside derivatives in deuterated chloroform were measured. The 15N chemical shifts were determined by the 1H? 15N HMBC method, and complete 15N chemical‐shift assignments were made with the aid of density functional theory (DFT) calculations. Inclusion of solvation effects significantly improved the precision of the calculations of 15N chemical shifts. Halogen‐substitution effects on the 15N and 13C chemical shifts of purine rings are discussed in the context of DFT results. The experimental coupling constants for 19F interacting with 15N and 13C of the 6‐fluoropurine 2‐deoxynuleoside are compared with those from DFT calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The ability of electronic structure methods (11 density functionals, HF, and MP2 calculations; two basis sets and two solvation models) to accurately calculate the 19F chemical shifts of 31 structures of fluorinated amino acids and analogues with known experimental 19F NMR spectra has been evaluated. For this task, BHandHLYP, ωB97X, and Hartree–Fock with scaling factors (provided within) are most accurate. Additionally, the accuracy of methods to calculate relative changes in fluorine shielding across 23 sets of structural variants, such as zwitterionic amino acids versus side chains only, was also determined. This latter criterion may be a better indicator of reliable methods for the ultimate goal of assigning and interpreting chemical shifts of fluorinated amino acids in proteins. It was found that MP2 and M062X calculations most accurately assess changes in shielding among analogues. These results serve as a guide for computational developments to calculate 19F chemical shifts in biomolecular environments. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号