首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Clusterwise regression consists of finding a number of regression functions each approximating a subset of the data. In this paper, a new approach for solving the clusterwise linear regression problems is proposed based on a nonsmooth nonconvex formulation. We present an algorithm for minimizing this nonsmooth nonconvex function. This algorithm incrementally divides the whole data set into groups which can be easily approximated by one linear regression function. A special procedure is introduced to generate a good starting point for solving global optimization problems at each iteration of the incremental algorithm. Such an approach allows one to find global or near global solution to the problem when the data sets are sufficiently dense. The algorithm is compared with the multistart Späth algorithm on several publicly available data sets for regression analysis.  相似文献   

2.
This article is concerned with two global optimization problems (P1) and (P2). Each of these problems is a fractional programming problem involving the maximization of a ratio of a convex function to a convex function, where at least one of the convex functions is a quadratic form. First, the article presents and validates a number of theoretical properties of these problems. Included among these properties is the result that, under a mild assumption, any globally optimal solution for problem (P1) must belong to the boundary of its feasible region. Also among these properties is a result that shows that problem (P2) can be reformulated as a convex maximization problem. Second, the article presents for the first time an algorithm for globally solving problem (P2). The algorithm is a branch and bound algorithm in which the main computational effort involves solving a sequence of convex programming problems. Convergence properties of the algorithm are presented, and computational issues that arise in implementing the algorithm are discussed. Preliminary indications are that the algorithm can be expected to provide a practical approach for solving problem (P2), provided that the number of variables is not too large.  相似文献   

3.
In this paper, an algorithm is presented for the transshipment problem that is an adaption of the method used by Jones, Saigal, and Schneider for solving singlecommodity, spatial-equilibrium problems. The approach uses a variable-dimension strategy in which a sequence of subproblems is formed by solving the problem ‘one-node-at-a-time’. The algorithm is tested on uncapacitated transportation problems. Although the computational results are not directly comparable to other methods (since the algorithm is implemented in C under UNIX), the results show that the method is very effective and may be competitive with the best available algorithms for linear network problems. This research was supported, in part, by grant number ECS-8504195 from the National Science Foundation.  相似文献   

4.
This paper develops a mathematical model for project time compression problems in CPM/PERT type networks. It is noted this formulation of the problem will be an adequate approximation for solving the time compression problem with any continuous and non-increasing time-cost curve. The kind of this model is Mixed Integer Linear Program (MILP) with zero-one variables, and the Benders' decomposition procedure for analyzing this model has been developed. Then this paper proposes a new approach based on the surrogating method for solving these problems. In addition, the required computer programs have been prepared by the author to execute the algorithm. An illustrative example solved by the new algorithm, and two methods are compared by several numerical examples. Computational experience with these data shows the superiority of the new approach.  相似文献   

5.
In this article, an approach for solving finite minimax problems is proposed. This approach is based on the use of hyperbolic smoothing functions. In order to apply the hyperbolic smoothing we reformulate the objective function in the minimax problem and study the relationship between the original minimax and reformulated problems. We also study main properties of the hyperbolic smoothing function. Based on these results an algorithm for solving the finite minimax problem is proposed and this algorithm is implemented in general algebraic modelling system. We present preliminary results of numerical experiments with well-known nonsmooth optimization test problems. We also compare the proposed algorithm with the algorithm that uses the exponential smoothing function as well as with the algorithm based on nonlinear programming reformulation of the finite minimax problem.  相似文献   

6.
Gauss—Seidel type relaxation techniques are applied in the context of strictly convex pure networks with separable cost functions. The algorithm is an extension of the Bertsekas—Tseng approach for solving the linear network problem and its dual as a pair of monotropic programming problems. The method is extended to cover the class of generalized network problems. Alternative internal tactics for the dual problem are examined. Computational experiments — aimed at the improved efficiency of the algorithm — are presented.This research was supported in part by National Science Foundation Grant No. DCR-8401098-A01.  相似文献   

7.
This paper is concerned with a new approach for solving quadratic assignment problems (QAP). We first reformulate QAP as a concave quadratic programming problem and apply an outer approximation algorithm. In addition, an improvement routine is incorporated in the final stage of the algorithm. Computational experiments on a set of standard data demonstrate that this algorithm can yield favorable results with a relatively low computational effort.  相似文献   

8.
Gauss—Seidel type relaxation techniques are applied in the context of strictly convex pure networks with separable cost functions. The algorithm is an extension of the Bertsekas—Tseng approach for solving the linear network problem and its dual as a pair of monotropic programming problems. The method is extended to cover the class of generalized network problems. Alternative internal tactics for the dual problem are examined. Computational experiments —aimed at the improved efficiency of the algorithm — are presented. This research was supported in part by National Science Foundation Grant No. DCR-8401098-A0l.  相似文献   

9.
Separated continuous linear programs (SCLP) are a class of continuous linear programs which, among other things, can serve as a useful model for dynamic network problems where storage is permitted at the nodes. Recent work on SCLP has produced a detailed duality theory, conditions under which an optimal solution exists with a finite number of breakpoints, a purification algorithm, as well as a convergent algorithm for solving SCLP under certain assumptions on the problem data. This paper combines much of this work to develop a possible approach for solving a wider range of SCLP problems, namely those with fairly general costs. The techniques required to implement the algorithm are no more than standard (finite-dimensional) linear programming and line searching, and the resulting algorithm is simplex-like in nature. We conclude the paper with the numerical results obtained by using a simple implementation of the algorithm to solve a small problem. Received: May 1994 / Accepted: March 2002?Published online June 25, 2002  相似文献   

10.
In [2] Gavish and Shlifer present an algorithm for solving a class of transportation scheduling problems which includes the delivery problem, the school bus problem, and others. Their algorithm is based on the ‘savings method’ of Clarke and Wright. By solving a sequence of assignment problems, upper bounds may be generated for the original problem and the optimal solution determined through a branch and bound procedure. However, for certain problems the CPU time becomes excessive. In this paper we show that the bounds may be improved by solving a related maximum matching problem instead of the assignment problem. The result is that fewer branches need to be investigated. Computational results are presented indicating that considerably less CPU time is needed to solve problems using this approach than with the approach of Gavish and Shlifer.  相似文献   

11.
We propose a column generation based exact decomposition algorithm for the problem of scheduling n jobs with an unrestrictively large common due date on m identical parallel machines to minimize total weighted earliness and tardiness. We first formulate the problem as an integer program, then reformulate it, using Dantzig–Wolfe decomposition, as a set partitioning problem with side constraints. Based on this set partitioning formulation, a branch and bound exact solution algorithm is developed for the problem. In the branch and bound tree, each node is the linear relaxation problem of a set partitioning problem with side constraints. This linear relaxation problem is solved by column generation approach where columns represent partial schedules on single machines and are generated by solving two single machine subproblems. Our computational results show that this decomposition algorithm is capable of solving problems with up to 60 jobs in reasonable cpu time.  相似文献   

12.
We propose an exact solution approach for solving nonlinear multi-objective optimization problems with separable discrete variables and a single constraint. The approach converts the multi-objective problem into a single objective problem by using surrogate multipliers from which we find all the solutions with objective values within a given range. We call this the surrogate target problem which is solved by using an algorithm based on the modular approach. Computational experiments demonstrate the effectiveness of this approach in solving large-scale problems. A simple example is presented to illustrate an interactive decision making process.  相似文献   

13.
In this article, a branch and-bound outer approximation algorithm is presented for globally solving a sum-of-ratios fractional programming problem. To solve this problem, the algorithm instead solves an equivalent problem that involves minimizing an indefinite quadratic function over a nonempty, compact convex set. This problem is globally solved by a branch-and-bound outer approximation approach that can create several closed-form linear inequality cuts per iteration. In contrast to pure outer approximation techniques, the algorithm does not require computing the new vertices that are created as these cuts are added. Computationally, the main work of the algorithm involves solving a sequence of convex programming problems whose feasible regions are identical to one another except for certain linear constraints. As a result, to solve these problems, an optimal solution to one problem can potentially be used to good effect as a starting solution for the next problem.  相似文献   

14.
This paper introduces the non-idling machine constraint where no intermediate idle time between the operations processed by a machine is allowed. In its first part, the paper considers the non-idling single-machine scheduling problem. Complexity aspects are first discussed. The “Earliest Non-Idling” property is then introduced as a sufficient condition so that an algorithm solving the original problem also solves its non-idling variant. Moreover it is shown that preemptive problems do have that property. The critical times of an instance are then introduced and it is shown that when their number is polynomial, as for equal-length jobs, a polynomial algorithm solving the original problem has a polynomial variant solving its non-idling version.  相似文献   

15.
This paper extended the concept of the technique for order preference by similarity to ideal solution (TOPSIS) to develop a methodology for solving multi-level non-linear multi-objective decision-making (MLN-MODM) problems of maximization-type. Also, two new interactive algorithms are presented for the proposed TOPSIS approach for solving these types of mathematical programming problems. The first proposed interactive TOPSIS algorithm includes the membership functions of the decision variables for each level except the lower level of the multi-level problem. These satisfactory decisions are evaluated separately by solving the corresponding single-level MODM problems. The second proposed interactive TOPSIS algorithm lexicographically solves the MODM problems of the MLN-MOLP problem by taking into consideration the decisions of the MODM problems for the upper levels. To demonstrate the proposed algorithms, a numerical example is solved and compared the solutions of proposed algorithms with the solution of the interactive algorithm of Osman et al. (2003) [4]. Also, an example of an application is presented to clarify the applicability of the proposed TOPSIS algorithms in solving real world multi-level multi-objective decision-making problems.  相似文献   

16.
This paper studies an extended trust region subproblem (eTRS) in which the trust region intersects the unit ball with a single linear inequality constraint. We present an efficient algorithm to solve the problem using a diagonalization scheme that requires solving a simple convex minimization problem. Attainment of the global optimality conditions is discussed. Our preliminary numerical experiments on several randomly generated test problems show that, the new approach is much faster in finding the global optimal solution than the known semidefinite relaxation approach, especially when solving large scale problems.  相似文献   

17.
We present an algorithm for solving a class of nonlinear complementarity problems called the almost linear complementarity problem (ALCP), which can be used to simulate free boundary problems. The algorithm makes use of a procedure for identifying an active index subset of an ALCP by bounding its solution with an interval vector. It is shown that an acceptable solution of the given ALCP can be obtained by solving at most n systems of equations. Numerical results are reported to illustrate the efficiency of the algorithm for large-scale problems.  相似文献   

18.
19.

An important part of the well-known iterative closest point algorithm (ICP) is the variational problem. Several variants of the variational problem are known, such as point-to-point, point-to-plane, generalized ICP, and normal ICP (NICP). This paper proposes a closed-form exact solution for orthogonal registration of point clouds based on the generalized point-to-point ICP algorithm. We use points and normal vectors to align 3D point clouds, while the common point-to-point approach uses only the coordinates of points. The paper also presents a closed-form approximate solution to the variational problem of the NICP. In addition, the paper introduces a regularization approach and proposes reliable algorithms for solving variational problems using closed-form solutions. The performance of the algorithms is compared with that of common algorithms for solving variational problems of the ICP algorithm. The proposed paper is significantly extended version of Makovetskii et al. (CCIS 1090, 217–231, 2019).

  相似文献   

20.
In this paper, an algorithm is presented for the transshipment problem that is an adaption of the method used by Jones, Saigal, and Schneider for solving single-commodity, spatial-equilibrium problems. The approach uses a variable-dimension strategy in which a sequence of subproblems is formed by solving the problem one-node-at-a-time. The algorithm is tested on uncapacitated transportation problems. Although the computational results are not directly comparable to other methods (since the algorithm is implemented in C under UNIX), the results show that the method is very effective and may e competitive with the best available algorithms for linear network problems.This research was supported, in part, by grant number ECS-85 04 195 from the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号