首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For discrete multiple orthogonal polynomials such as the multiple Charlier polynomials, the multiple Meixner polynomials, and the multiple Hahn polynomials, we first find a lowering operator and then give a (r+1)th order difference equation by combining the lowering operator with the raising operator. As a corollary, explicit third order difference equations for discrete multiple orthogonal polynomials are given, which was already proved by Van Assche for the multiple Charlier polynomials and the multiple Meixner polynomials.  相似文献   

2.
3.
It has been shown in Ferreira et al. [Asymptotic relations in the Askey scheme for hypergeometric orthogonal polynomials, Adv. in Appl. Math. 31(1) (2003) 61–85], López and Temme [Approximations of orthogonal polynomials in terms of Hermite polynomials, Methods Appl. Anal. 6 (1999) 131–146; The Askey scheme for hypergeometric orthogonal polynomials viewed from asymptotic analysis, J. Comput. Appl. Math. 133 (2001) 623–633] that the three lower levels of the Askey table of hypergeometric orthogonal polynomials are connected by means of asymptotic relations. In Ferreira et al. [Limit relations between the Hahn polynomials and the Hermite, Laguerre and Charlier polynomials, submitted for publication] we have established new asymptotic connections between the fourth level and the two lower levels. In this paper, we continue with that program and obtain asymptotic expansions between the fourth level and the third level: we derive 16 asymptotic expansions of the Hahn, dual Hahn, continuous Hahn and continuous dual Hahn polynomials in terms of Meixner–Pollaczek, Jacobi, Meixner and Krawtchouk polynomials. From these expansions, we also derive three new limits between those polynomials. Some numerical experiments show the accuracy of the approximations and, in particular, the accuracy in the approximation of the zeros of those polynomials.  相似文献   

4.
5.
6.
Invariant factors of bivariate orthogonal polynomials inherit most of the properties of univariate orthogonal polynomials and play an important role in the research of Stieltjes type theorems and location of common zeros of bivariate orthogonal polynomials. The aim of this paper is to extend our study of invariant factors from two variables to several variables. We obtain a multivariate Stieltjes type theorem, and the relationships among invariant factors, multivariate orthogonal polynomials and the corresponding Jacobi matrix. We also study the location of common zeros of multivariate orthogonal polynomials and provide some examples of tri-variate.  相似文献   

7.
Para‐orthogonal polynomials derived from orthogonal polynomials on the unit circle are known to have all their zeros on the unit circle. In this note we study the zeros of a family of hypergeometric para‐orthogonal polynomials. As tools to study these polynomials, we obtain new results which can be considered as extensions of certain classical results associated with three term recurrence relations and differential equations satisfied by orthogonal polynomials on the real line. One of these results which might be considered as an extension of the classical Sturm comparison theorem, enables us to obtain monotonicity with respect to the parameters for the zeros of these para‐orthogonal polynomials. Finally, a monotonicity of the zeros of Meixner‐Pollaczek polynomials is proved.  相似文献   

8.
The purpose of this article is to give some asymptotic formulae of polyorthogonal polynomials with respect to some classical measures. The formulae are analogous to the Mehler–Heine formulae for Jacobi and Laguerre polynomials.  相似文献   

9.
The paper deals with Krylov methods for approximating functions of matrices via interpolation. In this frame residual smoothing techniques based on quasi‐kernel polynomials are considered. Theoretical results as well as numerical experiments illustrate the effectiveness of our approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The paper reviews the impact of modern orthogonal polynomial theory on the analysis of numerical algorithms for ill-posed problems. Of major importance are uniform bounds for orthogonal polynomials on the support of the weight function, the growth of the extremal zeros, and asymptotics of the Christoffel functions.  相似文献   

11.
Recently, Srivastava and Pintér proved addition theorems for the generalized Bernoulli and Euler polynomials. Luo and Srivastava obtained the anologous results for the generalized Apostol–Bernoulli polynomials and the generalized Apostol–Euler polynomials. Finally, Tremblay et al. gave analogues of the Srivastava–Pintér addition theorem for general family of Bernoulli polynomials. In this paper, we obtain Srivastava–Pintér type theorems for 2D‐Appell Polynomials. We also give the representation of 2D‐Appell Polynomials in terms of the Stirling numbers of the second kind and 1D‐Appell polynomials. Furthermore, we introduce the unified 2D‐Apostol polynomials. In particular, we obtain some relations between that family of polynomials and the generalized Hurwitz–Lerch zeta function as well as the Gauss hypergeometric function. Finally, we present some applications of Srivastava–Pintér type theorems for 2D‐Appell Polynomials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT

By building a second-order adjoint difference equations on nonuniform lattices, the generalized Rodrigues type representation for the second kind solution of a second-order difference equation of hypergeometric type on nonuniform lattices is given. The general solution of the equation in the form of a combination of a standard Rodrigues formula and a ‘generalized’ Rodrigues formula is also established.  相似文献   

13.
We introduce, characterise and provide a combinatorial interpretation for the so‐called q‐Jacobi–Stirling numbers. This study is motivated by their key role in the (reciprocal) expansion of any power of a second order q‐differential operator having the q‐classical polynomials as eigenfunctions in terms of other even order operators, which we explicitly construct in this work. The results here obtained can be viewed as the q‐version of those given by Everitt et al. and by the first author, whilst the combinatorics of this new set of numbers is a q‐version of the Jacobi–Stirling numbers given by Gelineau and the second author.  相似文献   

14.
We present a high‐order shifted Gegenbauer pseudospectral method (SGPM) to solve numerically the second‐order one‐dimensional hyperbolic telegraph equation provided with some initial and Dirichlet boundary conditions. The framework of the numerical scheme involves the recast of the problem into its integral formulation followed by its discretization into a system of well‐conditioned linear algebraic equations. The integral operators are numerically approximated using some novel shifted Gegenbauer operational matrices of integration. We derive the error formula of the associated numerical quadratures. We also present a method to optimize the constructed operational matrix of integration by minimizing the associated quadrature error in some optimality sense. We study the error bounds and convergence of the optimal shifted Gegenbauer operational matrix of integration. Moreover, we construct the relation between the operational matrices of integration of the shifted Gegenbauer polynomials and standard Gegenbauer polynomials. We derive the global collocation matrix of the SGPM, and construct an efficient computational algorithm for the solution of the collocation equations. We present a study on the computational cost of the developed computational algorithm, and a rigorous convergence and error analysis of the introduced method. Four numerical test examples have been carried out to verify the effectiveness, the accuracy, and the exponential convergence of the method. The SGPM is a robust technique, which can be extended to solve a wide range of problems arising in numerous applications. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 307–349, 2016  相似文献   

15.
We propose an algorithm to construct recurrence relations for the coefficients of the Fourier series expansions with respect to the q-classical orthogonal polynomials pk(x;q). Examples dealing with inversion problems, connection between any two sequences of q-classical polynomials, linearization of ϑm(x) pn(x;q), where ϑm(x) is xmor (x;q)m, and the expansion of the Hahn-Exton q-Bessel function in the little q-Jacobi polynomials are discussed in detail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
《Mathematische Nachrichten》2017,290(11-12):1716-1731
Exceptional orthogonal Laguerre polynomials can be viewed as an extension of the classical Laguerre polynomials per excluding polynomials of certain order(s) from being eigenfunctions for the corresponding exceptional differential operator. We are interested in the (so‐called) Type I X1‐Laguerre polynomial sequence , and , where the constant polynomial is omitted. We derive two representations for the polynomials in terms of moments by using determinants. The first representation in terms of the canonical moments is rather cumbersome. We introduce adjusted moments and find a second, more elegant formula. We deduce a recursion formula for the moments and the adjusted ones. The adjusted moments are also expressed via a generating function. We observe a certain detachedness of the first two moments from the others.  相似文献   

17.
The telegraph equation describes various phenomena in many applied sciences. We propose two new efficient spectral algorithms for handling this equation. The principal idea behind these algorithms is to convert the linear/nonlinear telegraph problems (with their initial and boundary conditions) into a system of linear/nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of our algorithm in the linear case is that the resulting linear systems have special structures that reduce the computational effort required for solving them. The numerical algorithms are supported by a careful convergence analysis for the suggested Chebyshev expansion. Some illustrative examples are given to demonstrate the wide applicability and high accuracy of the proposed algorithms. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1553–1571, 2016  相似文献   

18.
In a recent paper, it was shown that the zeros of Lamé polynomials satisfy a strong law of large numbers. In this paper, we show that the zeros also satisfy two central limit theorems.  相似文献   

19.
20.
In this research, by applying the extended Sturm-Liouville theorem for symmetric functions, a basic class of symmetric orthogonal polynomials (BCSOP) with four free parameters is introduced and all its standard properties, such as a generic second order differential equation along with its explicit polynomial solution, a generic orthogonality relation, a generic three term recurrence relation and so on, are presented. Then, it is shown that four main sequences of symmetric orthogonal polynomials can essentially be extracted from the introduced class. They are respectively the generalized ultraspherical polynomials, generalized Hermite polynomials and two other sequences of symmetric polynomials, which are finitely orthogonal on (−∞,∞) and can be expressed in terms of the mentioned class directly. In this way, two half-trigonometric sequences of orthogonal polynomials, as special sub-cases of BCSOP, are also introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号