with the delay depends on the argument of the unknown function and the state derivative. By reducing the equation with the Schröder transformation to another functional differential equation without iteration of the unknown function, we give existence of its local analytic solutions which extend the known results in related literature.  相似文献   

14.
Remarks on polynomial expansions of solutions of the heat equation in two space variables     
Wolfgang Watzlawek 《Applicable analysis》2013,92(1-3):19-29
Results on polynomial expansions of analytic solutions of the heat equation can be used for the discussion of the continuation of analytic solutions. A system of polynomial solutions introduced by Col ton and Wimp [3] is found good for such investigations in the two dimensional case. A Banach scales approach is the base for the results of the present paper  相似文献   

15.
Some properties of invariant polynomials with matrix arguments and their applications in econometrics     
Yasuko Chikuse  A. W. Davis 《Annals of the Institute of Statistical Mathematics》1986,38(1):109-122
Summary Further properties are derived for a class of invariant polynomials with several matrix arguments which extend the zonal polynomials. Generalized Laguerre polynomials are defined, and used to obtain expansions of the sum of independent noncentral Wishart matrices and an associated generalized regression coefficient matrix. The latter includes thek-class estimator in econometrics.  相似文献   

16.
17.
18.
具偏差变元高阶Lienard方程周期解存在性   总被引:2,自引:2,他引:2  
陈仕洲 《纯粹数学与应用数学》2006,22(1):108-110,117
利用重合度理论,研究了一类具偏差变元高阶L ienard型方程周期解的存在性,获得了该方程至少存在一个周期解的充分条件.  相似文献   

19.
Solitary and periodic solutions of the generalized Kuramoto-Sivashinsky equation   总被引:1,自引:1,他引:0  
N. A. Kudryashov 《Regular and Chaotic Dynamics》2008,13(3):234-238
The generalized Kuramoto-Sivashinsky equation in the case of the power nonlinearity with arbitrary degree is considered. New exact solutions of this equation are presented.   相似文献   

20.
Generalized solutions of a stochastic partial differential equation     
H. Kunita 《Journal of Theoretical Probability》1994,7(2):279-308
We discuss the Cauchy problem of a certain stochastic parabolic partial differential equation arising in the nonlinear filtering theory, where the initial data and the nonhomogeneous noise term of the equation are given by Schwartz distributions. The generalized (distributional) solution is represented by a partial (conditional) generalized expectation ofT(t)° 0,t –1 , whereT(t) is a stochastic process with values in distributions and s,t is a stochastic flow generated by a certain stochastic differential equation. The representation is used for getting estimates of the solution with respect to Sobolev norms.Further, by applying the partial Malliavin calculus of Kusuoka-Stroock, we show that any generalized solution is aC -function under a condition similar to Hörmander's hypoellipticity condition.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
We have continued our earlier studies on entire solutions of some special type linear homogeneous partial differential equations. Specifically, we deal with entire solutions of the equations that are represented in convergent series of Bessel polynomials, and determine orders and types of the solutions, in terms of their Taylor coefficients, by establishing an analogue of Lindelöf-Pringsheim theorem as well as Wiman-Valiron type theory for such functions. Finally, by using value distribution theory of holomorphic functions, we are able to exhibit some uniqueness theorems of the entire (or meromorphic) solutions.  相似文献   

2.
3.
4.
5.
This article is concerned with a generalization of a functional differential equation known as the pantograph equation which contains a linear functional argument. In this article, we introduce a collocation method based on the Bessel polynomials for the approximate solution of the pantograph equations. The method is illustrated by studying the initial value problems. The results obtained are compared by the known results. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

6.
ABSTRACT

In recent years, special matrix functions and polynomials of a real or complex variable have been in a focus of increasing attention leading to new and interesting problems. In this work, we present matrix space analogues to generalized some functions and polynomials in the framework of matrix setting. Many of the special matrix functions and polynomials are constructed along standard procedures. Recently published papers are also surveyed and we list the most essential ones.  相似文献   

7.
An n×n real matrix P is said to be a symmetric orthogonal matrix if P = P?1 = PT. An n × n real matrix Y is called a generalized centro‐symmetric with respect to P, if Y = PYP. It is obvious that every matrix is also a generalized centro‐symmetric matrix with respect to I. In this work by extending the conjugate gradient approach, two iterative methods are proposed for solving the linear matrix equation and the minimum Frobenius norm residual problem over the generalized centro‐symmetric Y, respectively. By the first (second) algorithm for any initial generalized centro‐symmetric matrix, a generalized centro‐symmetric solution (least squares generalized centro‐symmetric solution) can be obtained within a finite number of iterations in the absence of round‐off errors, and the least Frobenius norm generalized centro‐symmetric solution (the minimal Frobenius norm least squares generalized centro‐symmetric solution) can be derived by choosing a special kind of initial generalized centro‐symmetric matrices. We also obtain the optimal approximation generalized centro‐symmetric solution to a given generalized centro‐symmetric matrix Y0 in the solution set of the matrix equation (minimum Frobenius norm residual problem). Finally, some numerical examples are presented to support the theoretical results of this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The structured Bessel-type functions of arbitrary even-order were introduced by Everitt and Markett in 1994; these functions satisfy linear ordinary differential equations of the same even-order. The differential equations have analytic coefficients and are defined on the whole complex plane with a regular singularity at the origin and an irregular singularity at the point of infinity. They are all natural extensions of the classical second-order Bessel differential equation. Further these differential equations have real-valued coefficients on the positive real half-line of the plane, and can be written in Lagrange symmetric (formally self-adjoint) form. In the fourth-order case, the Lagrange symmetric differential expression generates self-adjoint unbounded operators in certain Hilbert function spaces. These results are recorded in many of the papers here given as references. It is shown in the original paper of 1994 that in this fourth-order case one solution exists which can be represented in terms of the classical Bessel functions of order 0 and 1. The existence of this solution, further aided by computer programs in Maple, led to the existence of a linearly independent basis of solutions of the differential equation. In this paper a new proof of the existence of this solution base is given, on using the advanced theory of special functions in the complex plane. The methods lead to the development of analytical properties of these solutions, in particular the series expansions of all solutions at the regular singularity at the origin of the complex plane.  相似文献   

10.
A Haar wavelet operational matrix method (HWOMM) was derived to solve the Riccati differential equations. As a result, the computation of the nonlinear term was simplified by using the Block pulse function to expand the Haar wavelet one. The proposed method can be used to solve not only the classical Riccati differential equations but also the fractional ones. The capability and the simplicity of the proposed method was demonstrated by some examples and comparison with other methods.  相似文献   

11.
This paper presents a direct solution technique for solving the generalized pantograph equation with variable coefficients subject to initial conditions, using a collocation method based on Bernoulli operational matrix of derivatives. Only small dimension of Bernoulli operational matrix is needed to obtain a satisfactory result. Numerical results with comparisons are given to confirm the reliability of the proposed method for generalized pantograph equations.  相似文献   

12.
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem through a substitution. The purpose of this note is to present an alternative approach using ‘exact methods’, illustrating that a substitution and linearization of the problem is unnecessary. The ideas may be seen as forming a complimentary and arguably simpler approach to Azevedo and Valentino that have the potential to be assimilated and adapted to pedagogical needs of those learning and teaching exact differential equations in schools, colleges, universities and polytechnics. We illustrate how to apply the ideas through an analysis of the Gompertz equation, which is of interest in biomathematical models of tumour growth.  相似文献   

13.
This paper is concerned with an iterative functional differential equation
c1x(z)+c2x(z)+c3x(z)=x(az+bx(z))
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号