首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
15N NMR chemical shifts of 2‐aryl‐1,3,4‐oxadiazoles were assigned on the basis of the 1H–15N HMBC experiment. Chemical shifts of the nitrogen and carbon atoms in the oxadiazole ring correlate with the Hammett σ‐constants of substituents in the aryl ring (r2 ≥ 0.966 for N atoms). 15N NMR data are a suitable and sensitive means for characterizing long‐range electronic substituent effects. Additionally, 13C NMR data for these compounds are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
1H, 13C, and 15N NMR chemical shifts for pyridazines 4–22 were measured using 1D and 2D NMR spectroscopic methods including 1H? 1H gDQCOSY, 1H? 13C gHMQC, 1H? 13C gHMBC, and 1H? 15N CIGAR–HMBC experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The 1H and 13C NMR resonances of 16 purine glucosides were assigned by a combination of one‐ and two‐dimensional NMR experiments, including gs‐COSY, gs‐HSQC, and gs‐HMBC, in order to characterize the effect of substituent and the position of glucose unit on the NMR chemical shifts. In addition, 15N NMR chemical shifts for selected derivatives were investigated by using 1H? 15N chemical shift correlation techniques. To map the influence of sugar moiety on the directly bonded nitrogen atom, selected N9‐glucosides and their ribose analogs were compared. Characteristic long‐range 1H? 15N coupling constants, measured by using 1H? 15N gradient‐selected single‐quantum multiple bond correlation (GSQMBC), are also reported and discussed. All compounds investigated here belong to cytokinins, an important group of plant hormones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Analysis of the 19F chemical shifts of trifluoromethylpyrazole regioisomers has shown that while chemical shift is in general a reliable predictor of regiochemistry in this series, there is a narrow chemical shift range in which the two isomers overlap and the regiochemistry cannot be assigned with certainty. We have examined the usage of 19F--15N correlation spectroscopy as a method to provide a second unambiguous confirmation of regiochemistry of 3- and 5-trifluoromethylpyrazole regioisomers. In the case of 3-trifluoromethyl analogs, one expects a three-bond coupling to the pyridine type nitrogen (N-2). In the case of the 5-trifluoromethyl pyrazole the situation is exactly reversed, with the fluorines of the trifluoromethyl moiety being 3-bonds from the pyrrole type nitrogen (N-1). We have observed that 3-trifluromethyl analogs follow the expected pattern of readily observable 3-bond coupling. However, 19F--15N couplings in 5-trifluromethyl analogs do not follow the normal pattern of 3-bond coupling. Using this information we have been able to develop unambiguous methods to distinguish the isomers.  相似文献   

5.
1H, 13C and 15N NMR chemical shifts of 10 substituted pyrazolo[1,5‐a]pyrimidines were assigned based on DQF 1H, 1H COSY, PFG 1H, 13C HMQC and PFG 1H,X (X = 13C and 15N) HMBC experiments and on literature data. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
In the 13C NMR spectra of methylglyoxal bisdimethylhydrazone, the 13C‐5 signal is shifted to higher frequencies, while the 13C‐6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the 1H‐6 chemical shift and 1J(C‐6,H‐6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the –CH═N– bond does not change. This paradox can be rationalized by the C–H?N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum‐chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ(1H‐6) and 1J(C‐6,H‐6) parameters. The effect of the C–H?N hydrogen bond on the 1H shielding and one‐bond 13C–1H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The 1H, 13C and 15N chemical shifts of the 2‐ and 8‐(CH3)2N groups attached to the –C(CH3)═N– and –CH═N– moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8‐(CH3)2N group conjugate effectively with the π‐framework, and the 2‐(CH3)2N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N‐2– and N‐8– nitrogen lone pairs to the π‐framework varies, which affects the 1H, 13C and 15N shieldings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The 15N and 13C chemical shifts of 6‐(fluoro, chloro, bromo, and iodo)purine 2′‐deoxynucleoside derivatives in deuterated chloroform were measured. The 15N chemical shifts were determined by the 1H? 15N HMBC method, and complete 15N chemical‐shift assignments were made with the aid of density functional theory (DFT) calculations. Inclusion of solvation effects significantly improved the precision of the calculations of 15N chemical shifts. Halogen‐substitution effects on the 15N and 13C chemical shifts of purine rings are discussed in the context of DFT results. The experimental coupling constants for 19F interacting with 15N and 13C of the 6‐fluoropurine 2‐deoxynuleoside are compared with those from DFT calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
NMR spectroscopic studies are undertaken with derivatives of 2‐pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H; 15N,1H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of 13C,1H spin coupling constants is accomplished by 2D (δ,J) long‐range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3‐hydroxy‐2‐pyrazinecarboxylic acid are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Interaction of polyamines with nucleotides plays a key role in many biological processes. Here we use multiple NMR techniques to characterize interaction of spermidine with adenosine 5′‐triphosphate (ATP). Two‐dimensional 1H‐15N spectra obtained from gs‐HMBC experiments at varied pH show significant shift of N‐1 peak around pH 2.0–7.0 range, suggesting that spermidine binds to N‐1 site of ATP base. The binding facilitates N‐1 deprotonation, shifting its pKa from 4.3 to 3.4. By correlating 15N and 31P chemical shift data, it is clear that spermidine is capable of concurrently binding to ATP base and phosphate sites around pH 4.0–7.0. The self‐diffusion constants derived from 1H PFG‐diffusion measurements provide evidence that binding of spermidine to ATP is in 1:1 ratio, and pH variations do not induce significant nucleotide self‐association in our samples. 31P spectral analysis suggests that at neutral pH, Mg2+ ion competes with spermidine and shows stronger binding to ATP phosphates. From 31P kinetic measurements of myosin‐catalyzed ATP hydrolysis, it is found that binding of spermidine affects the stability and reactivity of ATP. These NMR results are important for advancing the studies on nucleotide–polyamine interaction and its impact on nucleotide structures and activities under varied conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
We present a pulse sequence for the simultaneous measurement of N? H and Cα? Hα couplings in double‐labeled proteins from 2D spectra. The proposed sequence, a modification of the HN(CO)CA experiment, combines the J‐modulation method and the IPAP scheme. The couplings can be readily retrieved from a series of 2D 15N? 1H correlation spectra, differing in the time point at which a 1H 180° pulse is applied. This induces an intensity modulation of the 15N? 1H correlation peaks with the Cα? Hα coupling. The Cα? Hα coupling is then obtained by fitting the observed intensities to the modulation equation. The N? H coupling is measured in each member of the set from peak‐to‐peak separations in the IPAP subspectra. The pulse sequence is experimentally verified with a sample of 15N/13C‐enriched ubiquitin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Pyridylmethylamines or pma are versatile platforms for different catalytic transformations. Five pma‐ligands and their respective Pd complexes have been studied by liquid state NMR. By comparing 1H, 13C and 15N chemical shifts for each pma/pma–Pd couple, a general trend for the metallacycle atoms concerns variations of the electronic distribution at the pendant arm, especially at the nitrogen atom of the ligand. Moreover, the increase of the chemical shift of the pendant arm nitrogen atom from primary to tertiary amine is also related to the increase of crowding within the complex. This statement is in good agreement with X‐ray data collected for several complexes. Catalytic results for the Suzuki–Miyaura reaction involving the pma–Pd complexes showed within this series that a sterically crowded and electron‐rich ligand in the metallacycle was essential to reach the coupling product with a good selectivity. In this context, NMR study of chemical shifts of all active nuclei especially in the metallacycle could give a trend of reactivity in the studied family of pma–Pd complexes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The complete 1H, 13C and 15N NMR signal assignments of some N‐ and O‐acylethanolamines, important family of naturally occurring bioactive lipid mediators, were achieved using one‐dimensional and two‐dimensional experiments (gs‐HMQC and gs‐HMBC). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The complete 1H, 13C and 15N NMR signals assignments of some new isopentenyladenosine analogues were achieved using one‐ and two‐dimensional experiments (gs‐NOESY, gs‐HMQC and gs‐HMBC). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
15N NMR data for a series of 12 para‐substituted benzamidoximes and benzamidinium salts were determined in dimethyl sulfoxide. For the amino group of benzamidoximes 1J(N,H) coupling constants were determined using polarization transfer techniques; the other 15N atoms were not detectable owing to fast exchange processes and, thus, standard proton noise decoupled spectra had to be measured. The 15N NMR chemical shifts of the oxime‐type nitrogen atom and the benzamidinium amino group (with two exceptions) correlate with Hammett σ° values (r2>0.95). 15N NMR shift data are a suitable and sensitive means for characterizing far‐ranging electronic substituent effects in these functional groups. Additionally, 13C NMR data in dimethyl sulfoxide solution are given. All spectroscopic data will be used for investigations into the mechanisms of the enzymes involved in the metabolic cycle of oxidation and reduction of benzamidines and benzamidoximes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
X‐ray data show that the diethyl 6,13‐bis[(Z)‐cyanomethylidene]‐5,5,14,14‐tetramethyl‐4,15‐dioxa‐7,12‐diazapentacyclo[9.5.2.02,10.03,7.012,16]octadeca‐8,17‐diene‐10,17‐dicarboxylate is formed as the ZZ isomer and diastereomer with the (1R*,2R*,3R*,10S*,11R*,12R*,16R*) configuration. The 1H, 13C, and 15N NMR data exhibit that on standing in chloroform‐d solution, there is a spontaneous isomerization of this compound resulting in a thermodynamically stable mixture of the ZZ, ZE, EE, and EZ isomers with the same backbone. Using the 2D [1H–1H] COSY, [1H–13C] HSQC, and [1H–13C, 1H–15N] HMBC NMR techniques and quantum chemical calculations makes it possible a complete assignment of signals in the 1H, 13C, and 15N NMR spectra of each of the isomers. Such isomerization does not occur for similar compounds with the more bulky substituents at the 1,3‐oxazolidine rings. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Complete 1H, 13C, and 125Te NMR spectral data for some vinyl tellurides are described. The 1H–125Te gHMBC experiment was used for the complete chemical shift assignment and structure elucidation of a mixture of regioisomers. The assignment (125Te NMR) and coupling constants (JH,H) for all regioisomers are described for the first time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Density functional theory (DFT)/Becke–Lee–Yang–Parr (B3LYP) and gauge‐including atomic orbital (GIAO) calculations were performed on a number of 1,2,4‐triazole derivatives, and the optimized structural parameters were employed to ascertain the nature of their predominant tautomers. 13C and 15N NMR chemical shifts of 3‐substituted 1,2,4‐triazole‐5‐thiones and their propargylated derivatives were calculated via GIAO/DFT approach at the B3LYP level of theory with geometry optimization using a 6‐311++G** basis set. A good agreement between theoretical and experimental 13C and 15N NMR chemical shifts could be found for the systems investigated. The data generated were useful in predicting 15N chemical shifts of all the nitrogen atoms of the triazole ring, some of which could not be obtained in solution state 15N HMBC/HSQC NMR measurements. The energy profile computed for the dipropargylated derivatives was found to follow the product distribution profile of regioisomers formed during propargylation of 1,2,4‐triazole thiones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
1H, 13C and 15N chemical shifts of some pyridines and mesoionic oxatriazole aminides were recorded in the absence and presence of the complex dirhodium tetrakis(trifluoroacetate). The adduct formation shifts prove that the nitrogen atom in the pyridine derivatives and the N‐6 atom of the aminides are the binding sites in the adducts. At low temperature, adduct species can be identified separately by their individual signals. The 15N chemical shift responds very sensitively even to small concentration changes in the adduct. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
1H, 13C, 15N and 195Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2′)‐chelated, deprotonated 2‐phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl2], trans(N,N)‐[Pt(2ppy*)(2ppy)Cl] and trans(S,N)‐[Pt(2ppy*)(DMSO‐d6)Cl] (formed in situ upon dissolving [Pt(2ppy*)(µ‐Cl)]2 in DMSO‐d6) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Δ1Hcoord = δ1Hcomplex ? δ1Hligand, Δ13Ccoord = δ13Ccomplex ? δ13Cligand, Δ15Ncoord = δ15Ncomplex ? δ15Nligand), as well as 195Pt chemical shifts and 1H‐195Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen‐adjacent H(6) protons and metallated C(2′) atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号