首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An end pumped Nd:YAP laser at 1341 nm is actively mode locked and passively Q-switched. Pumping was done with a pulsed high power laser diode with maximum power 425 W. V3+:YAG with 61% initial transmission served as saturable absorber, and an acousto-optic modulator is used for active mode locking. The output pulse train with 69 ns duration has a total energy of 3.2 mJ with ±4% shot-to-shot fluctuation. The peak output energy of a single mode locked pulse is 0.25 mJ. The pulse duration of a single mode locked pulse is less than 800 ps. The output laser beam is nearly diffraction limited with 1.6 mm diameter, and beam propagation factor M2 about 1.3.  相似文献   

2.
High peak power Nd:YAG laser pumped by 600-W diode laser stack   总被引:1,自引:0,他引:1  
The Q-switched laser with triangle slab made of Nd:YAG crystal side pumped by 600-W quasi-cw diode laser stack has been designed. The multimode (M2≈2.6) output energy of about 42 mJ was demonstrated in free running mode for110-mJ pump energy. In Q-switch experiments, the KDDP Pockels cell was placed between the slab and rear mirror in plane-plane cavity with output coupler of 84% transmission. The energy of 8 mJ in 2.1-ns pulse duration was obtained for near TEM00 output beam. For passive Q-switching by means of Cr:YAG crystal of 12.6% unsaturated transmission, the energy of 5.1 mJ in 2.5-ns pulse duration was obtained for output beam close to TEM00 mode.  相似文献   

3.
A 0.5 cm–1 bandwidth injection-locked KrF laser pumps a rare-gas Brillouin cell to produce a reflected pulse with a leading edge risetime of 1 ns, tunable from 248.1 to 248.7 nm. Consistent with Lamb theory of laser amplifiers, subsequent excimer amplification of this pulse produces an intense 500 ps spike on the pulse leading edge. Stimulated Raman scattering then separates the spike from the parent pulse, yielding a tunable short pulse at the first Stokes (S 1) wavelength. Varying the Raman cell length results in a variable Raman threshold and an adjustable short pulse duration: 250 ps pulses at energies of 3–4 mJ at 268 nm with a 50 cm methane cell and 350 ps, 5 mJ pulses from a 100 cm cell are measured with a streak camera. First pass Raman conversion of the spike toS 1 followed by second pass backward Raman amplification, where the parent 248 nm pulse serves as the pump beam for the reflectedS 1 pulse, yields simultaneousS 1 pulses of 20–25 mJ in the 800 ps range andS 2 pulses of 550 ps at 5–6 mJ near 290 nm. This laser will avoid collision effects during laser excitation and enable quantitative, single pulse imaging of OH radicals in turbulent combustion because of its high pulse energy.  相似文献   

4.
High energy picosecond pulse trains from a passively mode-locked Nd: YAG laser are obtained. The negative feedback controlled oscillator delivers 10–30 s trains with energies of up to 30 mJ and single pulse duration of less than 25 ps. The laser is operated with a repetition rate of 10 Hz. An active Q-control of the cavity generates a short pulse train with duration of 30–40 ns. The long pulse train energy reproducibility is better than ± 1.5%.  相似文献   

5.
Quasi-simultaneous laser action in the UV (0.337 μm) and the IR (10.6 μm) was observed from a pulsed laser with a sliding discharge plasma cathode. The laser operates at atmospheric pressure, with a gas mixture of CO2/N2/He, at a 0.26/0.50/4.0 lmin−1 flow rate. Output energies of 30 mJ in the IR and 0.35 mJ in the UV were obtained, from a laser discharge volume of 38.0×1.0×2.8 cm3. The optimum gas mixtures have been determined and the temporal behavior of the discharge parameters, the performance characteristics of the laser and the beam spatial distributions were investigated.  相似文献   

6.
A simple beam expander for frequency narrowing of dye lasers   总被引:1,自引:0,他引:1  
Design considerations and performance of a prism beam expander are presented. Using a prism beam expander and holographic grating, a dye laser pumped by a nitrogen laser has given 15 kW of diffraction limited power in 0.1–0.2 cm–1 linewidth. Addition of a single etalon gave a single frequency output of 10 kW in a linewidth of less than 0.01 cm–1.  相似文献   

7.
In this article, an experimental study of a miniature, sealed-off, high-repetition-rate transversely excited atmospheric-pressure (TEA) CO2 laser with a kind of surface-wire-corona preionization (SWCP) is described. We have utilized an SWCP consisting of SiO2 dielectric tube and a fine wire strained and attached to the dielectric surface. A BN ceramic material, which has an extremely low coefficient of thermal expansion of about 5 × 10−7/°C was employed as a supporter of the resonator. A measurement on emission spectra of SWCP has been reported. By applying SWCP to the TEA CO2 laser, efficient laser operation at an overall efficiency of 9.8% with an output energy of 150 mJ has been achieved from a small discharge volume of 25 cm3 with an active length of 230 mm. At the pulse repetition frequency of 60 Hz, the TEM00 mode of laser beam with pulse width of 60 ns was obtained.  相似文献   

8.
First results are presented from an experiment scattering laser light from a relativistic electron beam. The 5 cm diameter continuous electron beam of 28 keV kinetic energy and 2.6 A current presents an electron gas of a density of 8×107 cm–3, from which 20 ns pulses of laser light (490 nm) were scattered at a repetition rate of 15 Hz and an average power of 20 mJ per pulse. The Doppler-shifted wavelength of photons backscattered under 180° was analysed with a Fabry-Perot interferometer. This technique provides, for the first time, a non-destructive measurement of the velocity distribution in an electron beam radially resolved in space. The results presented here comprise the direct measurement of the absolute electron energy and the degree of space-charge compensation in the electron beam. The determination of an upper bound of 10–2 for the ratio of longitudinal to transverse electron temperature implies the first direct measurement of a flattened velocity distribution.  相似文献   

9.
A simple method for the generation of short, single-mode CO2 laser pulses produced by applying two voltage gates (of amplitude 3Uλ/4 and Uλ/4) to an electro-optic Q-switch placed in a three-mirror cavity is proposed. Single, single-mode, well-synchronizable pulses of 3 ns duration and of 3 mJ energy have been experimentally achieved from a TEA CO2 laser with an intracavity Pockels cell with 3 ns switching time. Using a numerical simulation it is shown that with shorter switching time (≈1 ns) the method enables one to obtain, from such a laser, a single, megawatt pulse of 1 ns duration.  相似文献   

10.
The plasma cathode design concept is applied to an Ar laser for the first time. The sliding discharge is used as a plasma cathode for the main laser discharge. The laser operates at atmospheric pressure with a gas mixture of Ar/He/SF6. Results concerning the dependence of the laser performance on the gas mixture flow rates and charging voltage are presented. The temporal behavior of the laser output is also presented. Output energies as high as 2 mJ, efficiency and specific energy extraction values up to 1.3×10−2% and 0.02 J/l respectively, at atmospheric pressure, are obtained. The spectroscopic examination of the output shows that lasing at 1.79 and 1.27 μm is obtained with approximately equal line intensities.  相似文献   

11.
Mildren RP 《Optics letters》2011,36(2):235-237
A crystalline Raman laser is pumped at 90° to the Raman laser axis by a single pass from a line-focused 532 nm pump laser of pulse duration 10 ns. The Raman laser threshold was 6.1 mJ, and at 12 mJ pump energy, a maximum output energy of 2.7 mJ was obtained with a slope efficiency of 46%. The threshold pump intensity is within a factor of 2 of the same device when end-pumped. The results highlight significant potential for coherent beam conversion and combination with enhanced degrees of flexibility and increased power.  相似文献   

12.
We report the pulsed-diode-pumped and acoustics-optically Q-switched operation of a long-pulse-width Tm:YAG laser at room temperature. Output energy for single pulse of 48 mJ is obtained under the incident pump energy of 217.3 mJ, corresponding to a slope efficiency of 30.2% and an optical conversion efficiency of 22.1%. For the Q-switched regime, maximum pulse energy of 3.25 mJ and the pulse width of 232.8 ns at the repetition rate of 30 Hz are achieved. The wavelength of the Q-switched laser is 2.013 μm. A beam quality factor of M 2 < 1.4 is measured using the traveling 90/10 knife-edge method.  相似文献   

13.
A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10–100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10–100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.  相似文献   

14.
A xenon flash-lamp-pumped, passively Q-switched Nd:GdVO4 laser with GaAs semiconductor saturable absorber is demonstrated. The static laser performance is investigated and the static output is 52 mJ when the pump energy is 9.45 J. The dynamic laser has the highest slope efficiency when the GaAs wafer is both the saturable absorber and output coupler. Pulses with duration of 64 ns and dynamic output of 47.6 mJ are obtained when the pump energy is 9.45 J. The highest dynamic–static ratio is 0.9:1. The coupled rate equations are used to simulate the Q-switched process of laser. The theoretical and experimental results are compared and discussed.  相似文献   

15.
A wide aperture, X-ray pre-ionized discharge pumped excimer laser was comparatively studied as oscillator and amplifier with XeCl and KrF as the active gases. With XeCl (KrF), an oscillator output energy of 3J (1 J) and a small-signal gain coefficient of 11%cm–1 (6%cm–1) were measured. The beam size was 6×5 cm2. For smaller beam widths (obtained by limiting the pre-ionized region), both excimers showed considerably higher gain. The dependence of output parameters on the X-ray dose was studied for both excimers.  相似文献   

16.
A short pulse (100 ns) high-energy x-ray source has been used to preionize a transversely excited carbon dioxide gas discharge laser of 600 cm3 active volume. The maximum output power of 60 MW in a 50 ns FWHM pulse was achieved from a CO2–N2–He–CO–Xe static gas mixture at 600 Torr pressure. The energy conversion efficiency was 6%.  相似文献   

17.
Injection-locking characteristics of an ArF excimer oscillator-amplifier laser are described including the use of stable-unstable optical cavities. Output intensities of 1 MW cm–2 have been produced with 3 mJ output energy, a spectral linewidth better than 5×10–3 nm and an injection locking efficiency of 0.9.  相似文献   

18.
An experimental study on the production of NOx as a function of dissipated energy in laser-produced plasma in air is presented. A plasma was produced by focusing a (60–180) mJ, 5 ns, 532 nm pulse from a Q-switched Nd:YAG laser. The results show that for laser energy in the range of 13–99 mJ the laser plasma generates 6.7×1016 NOx molecules per joule and 4.6×1016 NO molecules per joule. An order of magnitude estimate of the NO and NOx production per unit volume of heated gas based on a simple model show that the NOx and NO production efficiency in air are about 3×1022 and 2×1022 molecules J−1 m−3.  相似文献   

19.
The discharge quality and optimum pump parameters of a long-pulse high-pressure gas discharge excited KrCl laser are investigated. A three-electrode prepulse–mainpulse excitation circuit is employed as pump source. The discharge volume contains a gas mixture of HCl/Kr/Ne operated at a total pressure of up to 5 bar. For a plane–plane resonator, the divergence of both output laser beams is measured. A low beam divergence of less than 1 mrad is measured as a result of the very high discharge homogeneity. A maximum laser pulse duration of 150 ns (FWHM) is achieved for a pump duration of 270 ns (FWHM) and a power density of 340 kW cm-3. Pumping the discharge under optimum conditions employing a stable resonator results in a maximum specific energy of 0.45 J/l with a laser pulse duration of 117 ns and an efficiency of 0.63% based on the deposited energy. PACS 42.55.Lt; 52.25.-b; 52.59.Ye  相似文献   

20.
Q-switched operation of a room temperature Ho:YAP laser was resonantly end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm. The CW Ho:YAP laser generated 9.9 W of linearly output at 2119.03 nm with beam quality factor of M 2 ∼1.46 with respect to absorbed pump power of 19.16 W, corresponding to an optical-to-optical conversion efficiency of 51.7% and slope efficiency of 60.6%. Under Q-switched operation, the maximum output power of 9.8 W in relation to 10 kHz pulse repetition frequency (PRF) was obtained, however, the maximum peak power of 60 kW at the PRF of 5 kHz was demonstrated. At 5 kHz pulse energies of 1.92 mJ with pulse width of 32 ns was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号