首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Liposomes are now in the marketplace as cosmeticeuticals and, more important, pharmaceuticals. Three major achievements of liposome application: steric stabilization, remote loading of drugs by pH and ion gradients, and lipoplexes based on complexes of cationic liposomes with anionic nucleic acids or proteins extended research toward liposome application and opened the way for development of a large spectrum of products. However, liposomology still faces major deficiencies including: lack of control over drug release rate; sufficient loading of drugs for which pH and ion gradients do not apply; lack of means to override biological barriers (i.e. skin, blood–brain barrier); therapeutically efficient active targeting; and for a broad spectrum of non-medical applications, cheaper suitable raw materials (lipids). Overcoming these deficiencies is the current challenge of research and development of liposome application.  相似文献   

2.
Protein microarrays for diagnostic assays   总被引:1,自引:1,他引:0  
Protein microarray technology has enormous potential for in vitro diagnostics (IVD). Miniaturized parallelized immunoassays are perfectly suited to generating a maximum of diagnostically relevant information from minute amounts of sample whilst only requiring small amounts of reagent. Protein microarrays have become well-established research tools in basic and applied research and the first products are already on the market. This article reviews the current state of protein microarrays and discusses developments and future demands relating to protein arrays in their role as multiplexed immunoassays in the field of diagnostics.
Thomas O. JoosEmail:
  相似文献   

3.
4.
5.
Isothermal Microcalorimetry. Current problems and prospects   总被引:2,自引:0,他引:2  
A brief survey is given of recent developments and current activities in isothermal microcalorimetry. The discussion focuses on new methods in areas where the techniques have proved to be particularly useful or are promising to be so, in a near perspective. Some problems and limitations with current methods are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
C.A. Marquette  M. Cretich  M. Chiari 《Talanta》2007,71(3):1312-1318
A nanosize material composed of 330 nm glass beads coated with a copolymer of N,N-dimethylacrylamide (DMA), N,N-acryloyloxysuccinimide (NAS) and [3-(methacryloyl-oxy)propyl]trimethoxysilane (MAPS) was developed to improve the protein immobilization on biochips. The developed material, bearing rabbit-IgG proteins, was arrayed as 150 μm spots trapped at the surface of a poly(dimethylsiloxane) elastomer (PDMS), and compared to copoly(DMA-NAS-MAPS)-coated glass slides and latex beads based biochips. Evidences were made through scanning electron microscopy that the newly developed material based microarray exhibited surface irregularities at the submicron level leading to high specific area.The combination of such large immobilization area with the highly efficient protein immobilization of the copoly(DMA-NAS-MAPS) polymer, enabled the achievement of microarrays exhibiting good performances both in pure media and complex samples (human sera). Indeed, high specific/non-specific signal ratio was found using this optimized immobilization procedure.Chemiluminescent detection of anti-rabbit-IgG was obtained through peroxidase labeled antibodies in the 5 μg/l to 10 mg/l range. Application of the developed system to real samples was achieved for the detection of rheumatoid factor (RF) through a capture assay. Interesting results were obtained, with a RF detection over the 5.3-485 IU/ml range and without measurable matrix effect or non-specific signal.  相似文献   

7.
Protein microarrays and quantum dot probes for early cancer detection   总被引:3,自引:0,他引:3  
We describe here a novel approach for detection of cancer markers using quantum dot protein microarrays. Both relatively new technologies; quantum dots and protein microarrays, offer very unique features that together allow detection of cancer markers in biological specimens (serum, plasma, body fluids) at pg/ml concentration. Quantum dots offer remarkable photostability and brightness. They do not exhibit photobleaching common to organic fluorophores. Moreover, the high emission amplitude for QDs results in a marked improvement in the signal to noise ratio of the final image. Protein microarrays allow highly parallel quantitation of specific proteins in a rapid, low-cost and low sample volume format. Furthermore the multiplexed assay enables detection of many proteins at once in one sample, making it a powerful tool for biomarker analysis and early cancer diagnostics.

In a series of multiplexing experiments we investigated ability of the platform to detect six different cytokines in protein solution. We were able to detect TNF-, IL-8, IL-6, MIP-1β, IL-13 and IL-1β down to picomolar concentration, demonstrating high sensitivity of the investigated detection system.

We have also constructed and investigated two different models of quantum dot probes. One by conjugation of nanocrystals to antibody specific to the selected marker—IL-10, and the second by use of streptavidin coated quantum dots and biotinylated detector antibody. Comparison of those two models showed better performance of streptavidin QD–biotinylated detector antibody model. Data quantitated using custom designed computer program (CDAS) show that proposed methodology allows monitoring of changes in biomarker concentration in physiological range.  相似文献   


8.
Although increased automation, advanced analytical techniques and sophisticated information technology have greatly improved the performance and quality in medical laboratory testing, several studies show that significant amounts of errors occur. Detailed analysis revealed that most of the errors occur in the preanalytical phase, while fewer errors occur in the intra- and post-analytical phase. The majority of errors are caused by wrong sampling or occur during transport to the laboratory. This review focuses on the analytical procedures in a large central laboratory. Possible problems are described by following samples from the patient to the laboratory and back. Finally, the advantages and disadvantages of point-of-care testing versus central laboratory are compared.  相似文献   

9.
Protein microarrays provide a well-controlled, high-throughput way to uncover protein-protein interactions. One problem with this and other standardized assays, however, is that proteins vary considerably with respect to their physical properties. If a simple threshold-based approach is used to define protein-protein interactions, the resulting binary networks can be strongly biased. Here, we investigate the extent to which even closely related protein interaction domains vary when printed as microarrays. We find that, when a collection of well behaved, monomeric Src homology 2 (SH2) domains are printed at the same concentration, they vary by up to 50-fold with respect to the resulting surface density of active protein. When a threshold-based binding assay is performed on these domains using fluorescently labeled phosphopeptides, a misleading picture of the underlying biophysical interactions emerges. This problem can be circumvented, however, by obtaining saturation binding curves for each protein-peptide interaction. Importantly, the equilibrium dissociation constants obtained from these curves are independent of the surface density of active protein. We submit that an increased emphasis should be placed on obtaining quantitative information from protein microarrays and that this should serve as a more general goal in all efforts to define large-scale protein interaction networks.  相似文献   

10.
Data obtained in recent years that characterize the sorption capacity of natural sorbents with respect to the cations of a number of metals from nonexchangeable solutions and working fluids are generalized. We develop a technique for estimating the slip of pollutants with solutions in which the concentration of toxic cations does not exceed regulatory requirements. A method for calculating the kinetic curves of sorption is considered, which makes it possible to estimate the concentration of the pollutant coming out of the adsorber and the specific dynamic capacity of the sorbent to any current point of time from the beginning of the process.  相似文献   

11.
12.
The turn of the century witnessed the development of small molecule, protein, cell and tissue microarrays, heralding a new era of discovery-driven research using a host of different chemical libraries, biomolecules and tissue types. This highlight takes stock of this first decade of small molecule microarrays (SMMs) and describes how the technology has matured into a robust screening platform. We also highlight the many interesting and unique applications appearing using small molecule microarrays, in order to project forward to possible areas in which SMMs could contribute further to over the next five to ten years.  相似文献   

13.
We present the first example of a nuclear hormone receptor microarray, using for illustration the ligand-binding domains of the two estrogen receptors, ERalpha-LBD and ERbeta-LBD. The proteins are printed and allowed to attach to aldehyde slides; the efficiency of attachment depends on whether the LBD is liganded with agonists (low attachment) versus liganded with antagonists or unliganded (high attachment). This suggests that attachment is orientation specific and involves principally a single lysine residue. The attached ERs retain good ligand-binding activity that can be assessed using an estradiol-fluorophore conjugate, and specific and ER subtype-selective binding of ligands can be determined conveniently in competitive binding assays. This powerful new, high-throughput technique to study ligand binding to ER-LBDs can be extended to other nuclear hormone receptors and adapted to assay the recruitment of coregulator proteins.  相似文献   

14.
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple analytes in a single experiment. The specific affinity reaction of nucleic acids (hybridization) and antibodies towards antigens is the most common bioanalytical method for generating multiplexed quantitative results. Nucleic acid-based analysis is restricted to the detection of cells and viruses. Antibodies are more universal biomolecular receptors that selectively bind small molecules such as pesticides, small toxins, and pharmaceuticals and to biopolymers (e.g. toxins, allergens) and complex biological structures like bacterial cells and viruses. By producing an appropriate antibody, the corresponding antigenic analyte can be detected on a multiplexed immunoanalytical microarray. Food and water analysis along with clinical diagnostics constitute potential application fields for multiplexed analysis. Diverse fluorescence, chemiluminescence, electrochemical, and label-free microarray readout systems have been developed in the last decade. Some of them are constructed as flow-through microarrays by combination with a fluidic system. Microarrays have the potential to become widely accepted as a system for analytical applications, provided that robust and validated results on fully automated platforms are successfully generated. This review gives an overview of the current research on microarrays with the focus on automated systems and quantitative multiplexed applications. Figure MCR 3: A fully automated chemiluminescence microarray reader for analytical microarrays  相似文献   

15.
Light dosimetry: status and prospects   总被引:1,自引:0,他引:1  
This paper is a report on the state of the art of light dosimetry in photomedicine and photobiology. The basic quantity of interest is the radiant energy fluence rate, which can either be measured using a suitable probe, or calculated theoretically from measured optical constants. First, theoretical models used to analyse experimental transmission and reflection data are briefly discussed. It is shown that a two-flux model derived from the transport equation in the diffusion approximation resembles the Kubelka-Munk and other heuristic models. This illustrates the limitations of these models and suggests their abandonment in favour of transport theory. For theoretical energy fluence rate calculations at least three optical constants are needed, namely the absorption coefficient, the scattering coefficient and the average cosine of the scattering angle. These three constants have been measured for very few tissues. In principle only two of the three constants can be measured directly on thin samples, independent of a theoretical model. The energy fluence rate can be measured quantitatively with a miniature fibre optic probe with isotropic response. Such measurements allow indirect determination of the three optical constants. It appears that we are just beginning to understand the distribution of light energy fluence rate in tissues. Tasks for the near future are comparison of methods to measure optical constants, quantitative checks of calculated and measured energy fluence rates in model tissues and optical phantoms and further development of theoretical models. Particular attention is required for boundary conditions, with and without refractive index matching.  相似文献   

16.
This paper describes the fabrication of microarrays consisting of G protein-coupled receptors (GPCRs) on surfaces coated with gamma-aminopropylsilane (GAPS). Microspots of model membranes on GAPS-coated surfaces were observed to have several desired properties-high mechanical stability, long range lateral fluidity, and a thickness corresponding to a lipid bilayer in the bulk of the microspot. GPCR arrays were obtained by printing membrane preparations containing GPCRs using a quill-pin printer. To demonstrate specific binding of ligands, arrays presenting neurotensin (NTR1), adrenergic (beta1), and dopamine (D1) receptors were treated with fluorescently labeled neurotensin (BT-NT). Fluorescence images revealed binding only to microspots corresponding to the neurotensin receptor; this specificity was further demonstrated by the inhibition of binding in the presence of excess unlabeled neurotensin. The ability of GPCR arrays to enable selectivity studies between the different subtypes of a receptor was examined by printing arrays consisting of three subtypes of the adrenergic receptor: beta1, beta2, and alpha2A. When treated with fluorescently labeled CGP 12177, a cognate antagonist analogue specific to beta-adrenergic receptors, binding was only observed to microspots of the beta1 and beta2 receptors. Furthermore, binding of labeled CGP 12177 was inhibited when the arrays were incubated with solutions also containing ICI 118551, and in a manner consistent with the higher affinity of ICI 118551 for the beta2 receptor relative to that for the beta1 receptor. The ability to estimate binding affinities of compounds using GPCR arrays was examined using a competitive binding assay with BT-NT and unlabeled neurotensin on NTR1 arrays. The estimated IC(50) value (2 nM) for neurotensin is in agreement with the literature; this agreement suggests that the receptor -G protein complex is preserved in the microspot. This first ever demonstration of direct pin-printing of membrane proteins and ligand-binding assays thereof fills a significant void in protein microchip technology--the lack of practical microarray-based methods for membrane proteins.  相似文献   

17.
Thiol-terminated single-stranded deoxyribonucleic acids (ssDNA) can be immobilized onto pulsed plasma deposited poly(allylmercaptan) surfaces via disulfide bridge chemistry and are found to readily undergo nucleic acid hybridization. Unlike other methods for oligonucleotide attachment to solid surfaces, this approach is shown to be independent of substrate material or geometry, and amenable to highly efficient rewriting.  相似文献   

18.
This paper describes G-protein-coupled receptor (GPCR) microarrays on porous glass substrates and functional assays based on the binding of a europium-labeled GTP analogue. The porous glass slides were made by casting a glass frit on impermeable glass slides and then coating with gamma-aminopropyl silane (GAPS). The emitted fluorescence was captured on an imager with a time-gated intensified CCD detector. Microarrays of the neurotensin receptor 1, the cholinergic receptor muscarinic 2, the opioid receptor mu, and the cannabinoid receptor 1 were fabricated by pin printing. The selective agonism of each of the receptors was observed. The screening of potential antagonists was demonstrated using a cocktail of agonists. The amount of activation observed was sufficient to permit determinations of EC50 and IC50. Such microarrays could potentially streamline drug discovery by helping integrate primary screening with selectivity and safety screening without compromising the essential functional information obtainable from cellular assays.  相似文献   

19.
The success of microarrays, such as DNA chips, for biosample screening with minimal sample usage has led to a variety of technologies for assays on glass slides. Unfortunately, for small molecules, such as carbohydrates, these methods usually rely on covalent bond formation, which requires unique functional handles and multiple chemical steps. A new simpler concept in microarray formation is based on noncovalent fluorous-based interactions. A fluorous tail is designed not only to aid in saccharide purification but also to allow direct formation of carbohydrate microarrays on fluorous-derivatized glass slides for biological screening with lectins, such as concanavalin A. The noncovalent interactions in the fluorous-based array are even strong enough to withstand the detergents used in assays with the Erythrina crystagalli lectin. Additionally, the utility of benzyl carbonate protecting groups on fucose building blocks for the formation of alpha-linkages is demonstrated.  相似文献   

20.
The field of Small Molecule Microarray's (SMM's) is an ever-expanding part of the larger microarray field. SMM's are array based detection systems that use small molecules as probes immobilized on a variety of microarray surfaces that are screened against a number of targets for purposes including, but not limited to, protein-small molecule ligand recognition and protein function profiling. This review covers the recent advances in the field with particular emphasis on the successful applications of SMM's, as well as technical advances in platform optimization and novel small molecule immobilization strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号