首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma diagnostic studies have been carried out on the discharge source of a commercial glow discharge quadrupole mass spectrometer. Plasma parameters were determined using an electrostatic probe with the objective of determining the dependence (if any) of these parameters on the voltage placed on an auxiliary electrode immersed in the plasma. The biased electrode utilized in this study was the sampling orifice element itself. Our results indicate that, for positive orifice voltages with respect to the grounded anode, variations in the plasma potential and ion energy can be correlated directly to the bias placed on the sampling orifice. The dependence of the electron temperature on this parameter is observed to be more complex in nature, and electron number densities show little significant variation with respect to sampling orifice bias. In addition, increased orifice voltages result in an increase in the ion signal intensity measured with the mass spectrometer. Based on the results obtained here, we feel that this increase is due primarily to an increase in ion transmission to the quadrupole arising from the increased ion energy.  相似文献   

2.
A new liquid chromatography/mass spectrometry interface, the laser spray, has been developed. Explosive vaporization and mist formation occur when an aqueous solution effusing out from the tip of the stainless-steel capillary is irradiated from the opposite side of the capillary by a 10.6 microm infrared laser. Weak ion signals could be detected when the plume was sampled through the ion sampling orifice. When a high voltage (3-4 kV) was applied to the stainless-steel capillary, strong ion signals appeared. The ion abundances were found to be orders of magnitude greater than those obtained by conventional electrospray ionization in the case of aqueous solutions. The present method is regarded as an electric-field assisted form of matrix-assisted laser desorption/ionization in which the liquid chromatographic solvent (water, etc.) acts as a liquid matrix. Laser spray ionization is expected to become a versatile method for biological mass spectrometry because this method is compatible with the natural solvent, water.  相似文献   

3.
Laser-excited ionic fluorescence has been used to study the effects of sample matrix, operating conditions, and load coil shielding on analyte ion transport efficiency through the sampling orifice of an inductively coupled plasma mass spectrometer. Significant changes in ion transport efficiency result from changes in sample composition, RF forward power, nebulizer flow and torch shield configuration. The changes in ion transport efficiency correlate well with changes in the potential recorded on a single floating probe placed 1 mm upstream from the sampling orifice.  相似文献   

4.
This article describes a means of sampling ions that are created at a location remote from the primary ion source used for mass spectral analysis. Such a source can be used for delivery of calibrant ions on demand. Calibrant ions are sprayed into an atmospheric pressure chamber, at a position substantially removed from the sampling inlet. A gas flow sweeps the calibrants towards the sampling inlet, and a new means for toggling the second ion beam into the instrument can be achieved with the use of a repelling field established by an electrode in front of the sampling inlet. The physical separation of two or more sources of ions eliminates detrimental interactions due to gas flows or fields. When using a nanoflow electrospray tip as the primary ion source, the potential applied to the tip completely repels calibrant ions and there is no compromise in terms of electrospray performance. When calibrant ions are desired, the potential applied to the nanoflow electrospray tip is lowered for a short period of time to allow calibrant ions to be sampled into the instrument, thus providing a means for external calibration that avoids the typical complications and compromises associated with dual spray sources. It is also possible to simultaneously sample ions from multiple ion beams if necessary for internal mass calibration purposes. This method of transporting additional ion beams to a sampling inlet can also be used with different types of atmospheric pressure sources such as AP MALDI, as well as sources configured to deliver ions of different polarity.  相似文献   

5.
Nitrogen, argon, and krypton are used as curtain gases in an electrospray ionization mass spectrometer in an attempt to study the effect of these gases on the extent of ion fragmentation between the orifice and the skimmer of the interface region. A previously published collision model predicts that the degree of ion fragmentation increases with increasing mass of the curtain gas. However, the fragmentation yields are found to be the opposite to that expected. It is believed that the reversed trend with argon and krypton is caused by condensation of the gases within the free jet expansion between the orifice and the skimmer. A condensation parameter can be used to predict the degree of clustering of gases within a free jet expansion. When the condensation parameter is minimized, the predicted trend of fragmentation with mass is observed.  相似文献   

6.
A pulsed triple ionization source, using a common atmosphere/vacuum interface and ion path, has been developed to generate different types of ions for sequential ion/ion reaction experiments in a linear ion trap-based tandem mass spectrometer. The triple ionization source typically consists of a nano-electrospray emitter for analyte formation and two other emitters, an electrospray emitter and an atmospheric pressure chemical ionization emitter or a second nano-electrospray emitter for formation of the two different reagent ions. The three emitters are positioned in a parallel fashion close to the sampling orifice of the tandem mass spectrometer. The potentials applied to each emitter are sequentially pulsed so that desired ions are generated separately in time and space. Sequential ion/ion reactions take place after analyte ions of interest and different set of reagent ions are sequentially injected into a linear ion trap, where axial trapping is effected by applying an auxiliary radio frequency voltage to the end lenses. The pulsed triple ionization source allows independent optimization of each emitter and can be readily coupled to any atmospheric pressure ionization interface with no need for instrument modifications, provided the potentials required to transmit the ion polarity of interest can be synchronized with the emitter potentials. Several sequential ion/ion reactions examples are demonstrated to illustrate the analytical usefulness of the triple ionization source in the study of gas-phase ion/ion chemistry.  相似文献   

7.
Selected ion flow tube mass spectrometry, (SIFT-MS), involves the partial conversion of mass-selected precursor ions to product ions in their reactions with the trace gases in an air sample that is introduced into helium carrier gas in a flow tube. The precursor and product ions are then detected and counted by a downstream quadrupole mass spectrometer. Quantification of particular trace gases is thus achieved from the ratio of the total count rate of the product ions to that for the precursor ions. However, it is important to appreciate that in this ion chemistry the light precursor ions (usually H3O+ ions) are invariably converted to heavier product ions. Hence, the product ions diffuse to the flow tube walls more slowly and thus they are more efficiently transported to the downstream mass spectrometer sampling orifice. This phenomenon we refer to as diffusion enhancement. Further, it is a well-known fact that discrimination can occur against ions of large mass-to-charge ratio, (m/z), in quadrupole mass spectrometers. If not accounted for, diffusion enhancement usually results in erroneously high trace gas concentrations and mass discrimination results in erroneously low concentrations. In this experimental investigation, we show how both these counteracting effects can be accounted for to increase the accuracy of SIFT-MS quantification. This is achieved by relating the currents of ions of various m/z that arrive at the downstream mass spectrometer sampling orifice disc to their count rates at the ion detector after mass analysis. Thus, both diffusion enhancement and mass discrimination are parameterized as a function of m/z and these are combined to provide an overall discrimination factor for the particular analytical instrument.  相似文献   

8.
Planar laser-induced fluorescence was used to examine the effect of the sampling cone on analyte atom and ion distributions in the inductively coupled plasma used as an ion source for elemental mass spectrometry. Comparisons of planar laser-induced fluorescence images in the presence and absence of the sampling interface reveal that the insertion of the sampling cone into the plasma dramatically lowers singly-charged ion densities in the 1–2 mm region immediately upstream from the sampling cone, but increases densities in the region between 2 mm and 10 mm upstream from the sampling cone. Some of the drops in densities near the sampling cone can be attributed to acceleration of the plasma through the pumped sampling orifice. A shift in equilibrium between doubly and singly charged barium ions caused by cooling of the plasma is proposed to account for the increases in densities of Ba+ in the upstream region.  相似文献   

9.
A pulsed dual electrospray ionization source has been developed to generate positive and negative ions for subsequent ion/ion reaction experiments. The two sprayers, typically a nano-electrospray emitter for analytes and an electrospray emitter for reagents, are positioned in a parallel fashion close to the sampling orifice of a triple quadrupole/linear ion trap tandem mass spectrometer (Sciex Q TRAP). The potentials applied to each sprayer are alternately pulsed so that ions of opposite polarity are generated separately in time. Ion/ion reactions take place after ions of each polarity are sequentially injected into a high-pressure linear ion trap, where axial trapping is effected by applying an auxiliary radio frequency voltage to the end lenses. The pulsed dual electrospray source allows optimization of each sprayer and can be readily coupled to any spray interface with no need for instrument modifications, provided the potentials required to transmit the ion polarity of interest can be alternated in synchrony with the emitter potentials. Ion/ion reaction examples such as charge reduction of multiply charged protein ions, charge inversion of peptides ions, and protein-protein complex formation are given to illustrate capabilities of the pulsed dual electrospray source in the study of gas-phase ion/ion chemistry.  相似文献   

10.
This paper describes a new type of glow discharge (GD) ion source coupled to a time-of-flight mass spectrometer (TOFMS). The GD is operated in the microsecond pulse (μs-pulse) mode. The operational parameters of the μs-pulse GD were optimized against the ion signals, giving 180 Pa for the discharge pressure, 3 A for the transient discharge current, 1.75 kHz for the discharge frequency and 2 μs for the discharge pulse duration. Experimental results show that the discharge current in the μs-pulse mode can be one order of magnitude higher than that obtained in the d.c. mode. The structure of the interface between the μs-pulse GD and the mass spectrometer was found to be critical, and a Macor disc must be applied in front of the sampling orifice in order to shield the sampling plate from the anode of the GD to achieve both a good vacuum and the best sputtering. A transient sputtering rate of 24.4 μs s−1 mm−2 was reached in the μs-pulse mode and was significantly higher than that for the d.c.-GD. Typical mass spectra of brass and nickel samples were studied and are discussed. © 1997 Elsevier Science B.V.  相似文献   

11.
Atmospheric pressure Penning ionization mass spectra of methanol were measured as functions of Ar or He gas pressure in the first vacuum chamber, the position of the skimmer, and the voltage applied between the orifice and the skimmer. When the orifice and the skimmer were coaxial with a distance of 4 mm, the distribution of CH3OH2+(CH3OH)n clusters was only weakly dependent on both Ar pressure (in the range of 19-220 Pa) and orifice-skimmer voltage (in the range of 1-45 V). The ion/molecule reaction CH3OH2+ + CH3OH --> CH3+(CH3OH) + H2O was observed in the free jet expansion, especially at high orifice-skimmer voltage values. When the orifice and the skimmer were off-centered and the distance between them was increased to 18 mm, the formation of large CH3OH2+(CH3OH)n clusters, as well as their dissociation, were seen. The endothermic proton transfer reaction, CH3+(CH3OH) + CH3OH --> CH3OH2+ + CH3OCH3, occurred at high orifice-skimmer voltage. The collision-induced dissociation of cluster ions by He gas in the first vacuum chamber was much more efficient than by Ar. These results demonstrated that the mass spectra are highly dependent on skimmer position and on orifice-skimmer voltage and that ions observed by mass spectrometry do not necessarily reflect the abundance of ions produced in the atmospheric pressure ion source.  相似文献   

12.
The DART (direct analysis in real time) ion source is a novel atmospheric pressure ionization technique that enables efficient ionization of gases, liquids and solids with high throughput. A major limit to its wider application in the analysis of gases is its poor detection sensitivity caused by open‐air sampling. In this study, a confined interface between the DART ion source outlet and mass spectrometer sampling orifice was developed, where the plasma generated by the atmospheric pressure glow discharge collides and ionizes gas‐phase molecules in a Tee‐shaped flow tube instead of in open air. It leads to significant increase of collision reaction probability between high energy metastable molecules and analytes. The experimental results show that the ionization efficiency was increased at least by two orders of magnitude. This technique was then applied in the real time analysis of volatile organic compounds (VOCs) of Citrus Limon (lemon) and wounded Allium Cepa (onion). The confined DART ion source was proved to be a powerful tool for the studies of plant metabolomics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility spectrometer drift gas. The design of the ion mobility spectrometer allows reasonably fast installation (about 1 h), and thus the ion mobility spectrometer can be considered as an accessory of the mass spectrometer. The ion mobility spectrometer module can also be used as an independently operated device when equipped with a Faraday cup detector. The drift tube of the ion mobility spectrometer module consists of inlet, desolvation, drift, and extraction regions. The desolvation, drift and extraction regions are separated by ion gates. The inlet region has the shape of a stainless steel cup equipped with a small orifice. Ion mobility spectrometer drift gas is introduced through a curtain gas line from an original flange of the mass spectrometer. After passing through the drift tube, the drift gas serves as a curtain gas for the ion-sampling orifice of the ion mobility spectrometer before entering the ion source. Counterflow of the drift gas improves evaporation of the solvent from the electrosprayed sample. Drift gas is pumped away from the ion source through the original exhaust orifice of the ion source. Initial characterization of the ion mobility spectrometer device includes determination of resolving power values for a selected set of test compounds, separation of a simple mixture, and comparison of the sensitivity of the electrospray ionization ion mobility spectrometry/mass spectrometry (ESI-IMS/MS) mode with that of the ESI-MS mode. A resolving power of 80 was measured for 2,6-di-tert-butylpyridine in a 333 V/cm drift field at room temperature and with a 0.2 ms ion gate opening time. The resolving power was shown to be dependent on drift gas flow rate for all studied ion gate opening times. Resolving power improved as the drift gas flow increased, e.g. at a 0.5 ms gate opening time, a resolving power of 31 was obtained with a 0.65 L/min flow rate and 47 with a 1.3 L/min flow rate for tetrabutylammonium iodide. The measured limits of detection with ESI-MS and with ESI-IMS/MS modes were similar, demonstrating that signal losses in the IMS device are minimal when it is operated in a continuous flow mode. Based on these preliminary results, the IMS/MS instrument is anticipated to have potential for fast screening analysis that can be applied, for example, in environmental and drug analysis.  相似文献   

14.
Grym J  Otevrel M  Foret F 《Lab on a chip》2006,6(10):1306-1314
A new concept for electrospray coupling of microfluidic devices with mass spectrometry was developed. The sampling orifice of the time-of-flight mass spectrometer was modified with an external adapter assisting in formation and transport of the electrosprayed plume from the multichannel polycarbonate microdevice. The compact disk sized microdevice was designed with radial channels extending to the circumference of the disk. The electrospray exit ports were formed by the channel openings on the surface of the disk rim. No additional tips at the channel exits were used. Electrospray was initiated directly from the channel openings by applying high voltage between sample wells and the entrance of the external adapter. The formation of the spatially unstable droplet at the electrospray openings was eliminated by air suction provided by a pump connected to the external adapter. Compared with the air intake through the original mass spectrometer sampling orifice, more than an order of magnitude higher flow rate was achieved for efficient transport of the electrospray plume into the mass spectrometer. Additional experiments with electric potentials applied between the entrance sections of the external adapter and the mass spectrometer indicated that the air flow was the dominant transport mechanism. Basic properties of the system were tested using mathematical modeling and characterized using ESI/TOF-MS measurements of peptide and protein samples.  相似文献   

15.
Fourier transform ion cyclotron resonance (FTICR) mass spectrometers function such that the ion accumulation event takes place in a region of higher pressure outside the magnetic field which allows ions to be thermally cooled before being accelerated toward the ICR cell where they are decelerated and re-trapped. This transfer process suffers from mass discrimination due to time-of-flight effects. Also, trapping ions with substantial axial kinetic energy can decrease the performance of the FTICR instrument compared with the analysis of thermally cooled ions located at the trap center. Therefore, it is desirable to limit the energy imparted to the ions which results in lower applied trap plate potentials and reduces the spread in axial kinetic energy. The approach presented here for ion transfer, called restrained ion population transfer or RIPT, is designed to provide complete axial and radial containment of an ion population throughout the entire transfer process from the accumulation region to the ICR cell, eliminating mass discrimination associated with time-of-flight separation. This was accomplished by use of a number of quadrupole segments arranged in series with independent control of the direct current (DC) bias voltage applied to each segment of the quadrupole ion guide. The DC bias voltage is applied in such a way as to minimize the energy imparted to the ions allowing transfer of ions with low kinetic energy from the ion accumulation region to the ICR cell. Initial FTICR mass spectral data are presented that illustrate the feasibility of RIPT. A larger m/z range for a mixture of peptides is demonstrated compared with gated trapping. The increase in ion transfer time (3 ms to 130 ms) resulted in an approximately 11% decrease in the duty cycle; however this can be improved by simultaneously transferring multiple ion populations with RIPT. The technique was also modeled with SIMION 7.0 and simulation results that support our feasibility studies of the ion transfer process are presented.  相似文献   

16.
A previously uncharacterized source of detection mass bias is shown to be associated with atmospheric pressure ionization mass spectrometry (APIMS), and is attributed to a mass dependence in the sampling of ions from the supersonic free jet expansion of gas emerging from the ion source. The halide ions Cl ?, Br?, and I? are shown to be transported from the ion source aperture to a quadrupole mass filter with efficiencies that increase linearly with increasing mass of the ion. While the polyatomic anions SF 6 - and C7F 14 - are detected with even greater efficiencies than would be expected for monatomic anions of the same mass, this additional sensitivity to the polyatomic anions is thought to be related to ion loss processes occurring within the ion source. The experimental conditions under which these mass bias effects can be minimized or enhanced in APIMS are described.  相似文献   

17.
A new inductively coupled plasma mass spectrometer with an enlarged sampling orifice (1.31-mm dia.) and an offset ion lens yields very low levels of many troublesome polyatomic ions such as ArO+, ArN+, Ar2 +, ClO+, and ArCl+. The signals from refractory metal oxide ions are ≈ 1% of the corresponding metal ion signals, which is typical of most ICP-MS devices. Grounding the first electrode of the ion lens greatly reduces the severity of matrix effects to <- 20% loss in signal for Co+, Y+, or Cs+ in the presence of 10 mM Sr, Tm, or Pb. This latter lens setting causes only a modest loss (30%) in sensitivity for analyte elements compared to the best sensitivity obtainable by biasing the first lens. Alternatively, matrix effects can also be mitigated by readjusting the voltage applied to the first lens with the matrix present.  相似文献   

18.
Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) was utilized to evaluate an ion collision energy ramping technique that simultaneously fragments a variety of species. To evaluate this technique, the fragmentation patterns of a mixture of ions ranging in mass, charge state, and drift time were analyzed to determine their optimal fragmentation conditions. The precursor ions were pulsed into the IMS-MS instrument and separated in the IMS drift cell based on mobility differences. Two differentially pumped short quadrupoles were used to focus the ions exiting the drift cell, and fragmentation was induced by collision induced dissociation (CID) between the conductance limiting orifice behind the second short quadrupole and before the first octopole in the mass spectrometer. To explore the fragmentation spectrum of each precursor ion, the bias voltages for the short quadrupoles and conductance limiting orifices were increased from 0 to 50 V above nonfragmentation voltage settings. An approximately linear correlation was observed between the optimal fragmentation voltage for each ion and its specific drift time, so a linear voltage gradient was employed to supply less collision energy to high mobility ions (e.g., small conformations or higher charge state ions) and more to low mobility ions. Fragmentation efficiencies were found to be similar for different ions when the fragmentation voltage was linearly ramped with drift time, but varied drastically when only a single voltage was used.  相似文献   

19.
Although Fourier transform ion cyclotron resonance mass spectrometry is a powerful tool in the qualitative observation of gas phase reactions, ion detection is on the millisecond time scale, orders of magnitude longer than typically found when using a sector instrument. Observations of short-lived species such as chemically activated adduct ions can be accomplished using selective ion excitation as a probe of intermediate lifetime. Whereas ion elimination has been shown to be effective in monitoring ion lifetimes on the microsecond time scale, problems associated with detecting ions produced with high kinetic energies limits the technique. Use of a kinetic energy orifice as an ion skimmer effectively eliminates ions near the center of the ion cell at relatively low kinetic energies. By modifying a single section cell to include a kinetic energy orifice, the lifetimes of chemically activated adduct ions have been investigated.  相似文献   

20.
The factors determining the sensitivity of space-charge-dominated (SCD) unipolar ion sources, such as electrospray (ESP) and corona atmospheric pressure ionization (API) have been studied theoretically. The most important parameters are the ion density and ion drift time in the vicinity of the sampling orifice. These are obtained by solving a system of differential equations, “the space-charge problem.” For some simple geometries, analytical solutions are known. For a more realistic “needle-in-can” geometry, a solution to the space-charge problem was obtained using a finite-element method. The results illustrate some general characteristics of SCD ion sources. It is shown that for typical operating conditions the minimum voltage required to overcome the space-charge effect in corona API or ESP ion sources constitutes a dominant or significant fraction of total applied voltage. Further, the electric field and the ion density in the region of the ion-sampling orifice as well as the ion residence time in the source are determined mainly by the space charge. Finally, absolute sensitivities of corona API ion sources were calculated by using a geometry-independent treatment of space charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号