首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
基于大模场面积掺镱光纤搭建了全光纤1 030 nm高功率窄线宽光纤激光主振荡功率放大系统,实现了3 004 W的最高功率输出,斜率效率69.27%,是目前报道的输出功率最高的1 030 nm波段近衍射极限光纤激光器。最高输出功率时,x,y方向的光束质量因子分别为1.169,1.174,3 dB光谱宽度为0.18 nm,放大自发辐射抑制比达到37 dB。  相似文献   

2.
3.
窄线宽光纤激光器进展   总被引:3,自引:0,他引:3  
详细介绍采用光纤光栅获得窄线宽光纤激光器的各种技术,并讨论获得单模激光输出以及提高功率输出的方法。介绍了目前的最新进展,尤其是镱铒共掺磷酸盐玻璃DBR光纤激光所获得的最新数据,激光功率200mW,线宽1.75kHz。对光纤掺杂、光敏性以及光栅刻写等关键技术也进行了探讨。还重点介绍了作为应用之一的高功率激光系统前端种子源。  相似文献   

4.

基于大模场面积掺镱光纤搭建了全光纤1064 nm高功率窄线宽光纤激光主振荡功率放大系统,实现了2625 W的最高功率输出,斜率效率76%。最高输出功率时,光束质量为Mx2=1.273,My2=1.255,3 dB光谱宽度为21.7 GHz,这是目前全光纤激光器在该光谱线宽下实现的最高输出功率。

  相似文献   

5.
提出了一种低噪声、线宽小于4 kHz、波长为1 083 nm的线形腔单频光纤激光器.该激光器引入了偏振控制器来消除线形腔内的空间烧孔效应,从而抑制了多纵模振荡.实验结果表明:泵浦功率在40~200 mW范围内时,可获得稳定的单纵模振荡,且最大输出功率可达46 mW,光学信噪比大于60 dB,其光光转换效率和斜率效率分别为23%和33.3%%;经过1h的观察,测得的激光输出功率以及光谱不稳定性分别小于3%和0.9%;在整个观察期内,没有出现模式跳跃和模式竞争现象.  相似文献   

6.

高功率窄线宽光纤激光器在非线性频率转换、光谱合成以及相干合成等领域有着重要的应用前景。本文基于自研的复合腔结构窄线宽振荡器作为种子,采用单级主振荡功率放大技术(MOPA),实现了5 kW高效率的近单模窄谱激光输出。通过优化振荡器的时序特性和放大级结构,受激拉曼散射、光谱展宽和热致模式不稳定效应得到综合抑制。在最高功率时,信号光的3 dB和20 dB线宽分别为0.48 nm和2.1 nm,放大器的斜率效率约为86.1%,拉曼抑制比为28.3 dB,光束质量M2约1.35。本研究工作对于高功率窄线宽光纤激光的发展和研究具有重要的指导意义。

  相似文献   

7.
基于后向泵浦结构搭建了1050 nm光纤激光放大器,将20/400μm的双包层大模场掺镱光纤作为增益光纤,采用976 nm稳波长半导体激光器作为泵浦源。通过优化增益光纤长度,对短波长光纤放大器中的放大自发辐射效应进行抑制。采取优化种子时序稳定性的方法提升受激拉曼散射效应的阈值,实现了最高3.5 kW的功率输出。在最高输出功率下:输出激光在X方向和Y方向的光束质量因子分别约为1.33和1.25,此时的3 dB带宽为4.07 nm,光光转换效率为86.3%;时域信号稳定,没有出现模式不稳定现象。  相似文献   

8.
高功率窄线宽光纤激光器在相干探测、功率光谱合成等方面具有广泛的应用前景.分析了高功率窄线宽光纤激光器中受激布里渊散射效应的抑制方法,以及正弦相位调制光谱展宽理论.采用正弦相位调制技术将单频激光器的线宽展宽至2.9 GHz,通过三级放大结构对输出功率为50 mW的窄线宽种子源进行放大,实现了中心波长1064.34 nm、线宽2.9 GHz、最大功率780 W的激光输出,光—光转换效率79%,光束质量M2x=1.44,M2y=1.43.分析了相位调制前后输出功率提高的原因,认为正弦相位调制增加的纵模降低了光纤中的功率谱密度,提高了输出激光的受激布里渊散射阈值,促使相位调制后的输出功率大幅提高.该激光器的输出功率仅受限于抽运功率,进一步提高抽运功率,有望实现更高功率的窄线宽光纤激光输出.  相似文献   

9.
 在铒/镱共掺杂有源光纤上直接刻蚀光栅,制成一台紧凑型非对称π相移分布反馈光纤激光器。光栅总长度约50 mm,最佳相移位置在29 mm处,最佳耦合系数为150 m-1。采用980 nm激光二极管同向泵浦,当最大泵浦功率为200 mW时,在1 550.94 nm处实现约10 mW激光输出,线宽小于0.05 nm,阈值约35 mW,斜率效率为6.06%,总光 光转换效率为5%,基本满足长距离光通信系统光源功率实用化的要求。  相似文献   

10.
楚秋慧  郭超  颜冬林  舒强  史仪  温静  林宏奂  王建军 《强激光与粒子束》2020,32(12):121004-1-121004-13
近年来,光纤激光器得到了快速发展,且逐步应用于多个领域,功率的进一步提升仍然是光纤激光器的研究热点,光束合成是实现功率提升的重要手段,光束合成要求子光束为窄线宽光纤激光器,因此窄线宽光纤激光器的研究对光束合成功率的提升有重要意义。本文对窄线宽高功率光纤激光器的发展和研究现状进行了详细的介绍,并基于目前的研究现状分析了其发展的主要限制因素,并展望了未来的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号