首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 289 毫秒
1.
为研究含分支结构狭长受限空间油气爆炸特性规律,基于大涡模拟WALE模型和Zimont预混火焰模型,对横截面为100 mm×100 mm的含双侧分支管道受限空间油气泄压爆炸特性进行了数值模拟。通过对火焰形态、火焰传播速度和动态超压3个物理量的对比,验证了所建立模型对于含分支结构受限空间油气爆炸计算的适用性。基于数值模拟结果,对爆炸过程中的流场结构、火焰形态和超压变化规律进行了分析,指出了“浪花状”火焰的形成原因。结果表明:(1)火焰传播进入分支管道前,在主管道和分支管道交界处会产生旋转方向相反的对称涡旋结构,并随着火焰传播不断向分支管道内部发展;(2)当火焰传播进入分支管道后,分支管道内部前期已建立流场决定了火焰的形态,火焰锋面在涡旋结构作用下呈“浪花状”,此后火焰和流场相互影响,流场向湍流转捩,火焰锋面褶皱变形;(3)爆炸超压升压过程可划分为4个阶段,受到火焰锋面面积和分支管道泄压共同作用,表明爆炸流场、火焰行为和动态超压呈现出显著耦合性。  相似文献   

2.
利用自主搭建的泄爆容器结构响应测试系统,开展了不同泄爆面积条件下甲烷-空气预混气体泄爆实验,结合振动加速度、内部超压、火焰演化和信号频率-时间分布等探究了泄爆面积对容器结构响应的影响特征及机制。研究发现:(1)容器振动加速度曲线和内部超压曲线具有相似的变化趋势,两者均存在双峰现象,且两者一一对应,但加速度峰值出现略迟;随着无量纲泄爆系数增大,第1个内部超压和加速度峰值主体为增大趋势,而第2个内部超压和加速度峰值的变化趋势为先减小后增大再减小;(2)火焰未到达泄爆口之前,上部的火焰平均速度随着无量纲泄爆系数增大而减小,无量纲泄爆系数较小时火焰较早从泄爆口喷出;(3)在当前实验条件下,当无量纲泄爆系数为25.00时,热声耦合现象最剧烈,表现为最大幅值的振动响应和最大能量的高频振荡,而随着无量纲泄爆系数进一步增大或者减小,热声耦合现象逐渐衰减。  相似文献   

3.
为避免密闭空间内可燃预混气体爆炸事故造成的伤害,对其进行较为准确的爆炸超压预测是抗爆设计和日常安全管理的关键。结合已有文献实验数据,利用光滑层流火焰传播理论模型建立了爆炸超压模型;对比发现,当体积较大时,光滑层流火焰传播理论模型存在较大的误差。较大体积密闭空间爆炸火焰传播过程中的不稳定性造成火焰前锋面褶皱并引起湍流燃烧,导致火焰前锋面表面积大幅增加,且在火焰传播过程中表现出自相似分形特征。依据褶皱及湍流火焰传播过程中的自相似分形特征,基于分形燃烧理论和相关经验数据,进一步建立了考虑可燃预混气体爆炸火焰褶皱及湍流火焰传播的爆炸超压预测模型,并与实验所得结果进行了对比。结果表明:当密闭空间体积较大时,利用褶皱及湍流火焰传播理论建立的爆炸超压模型进行峰值压力估算时,两种工况下实验所得和理论计算所得相对误差分别为10.4%和11.1%,较光滑层流火焰传播理论爆炸超压模型相比,误差分别减少了72.3%和50.6%。本文所建立理论模型与实验所得结果具有较好的一致性,在一定程度上可满足结构抗爆设计或日常安全管理的需要。  相似文献   

4.
李国庆  杜扬  齐圣  王世茂  李蒙  李润 《爆炸与冲击》2018,38(6):1286-1394
采用WALE模型和Zimont预混火焰模型对内置圆孔障碍物油气泄压爆炸火焰特性进行了大涡模拟,并将大涡模拟计算结果和RNG k-ε湍流模型计算结果以及实验结果进行对比分析,验证了大涡模拟的精确性。结果表明:(1)大涡模拟在预测油气爆炸超压、火焰传播速度以及火焰形态变化等方面比RNG k-ε湍流模型精确度更高,且能表现出更多流场的精细化结构;(2)障碍物诱导管道内形成湍流度较高的流场区域,导致火焰产生褶皱弯曲变形,增大火焰面积,加速火焰传播;(3)爆炸超压、火焰传播速度和火焰面积内在联系密切,具有显著的耦合性,且随时间的变化趋势存在高度的一致性。  相似文献   

5.
为了研究惰性粉体对导管泄爆过程的影响,采用质量浓度C为0、40、80、120、160、200 、240 g/m3的碳酸氢钠(NaHCO3)粉体,分别抑制连接不同长度(250 mm、500 mm、750 mm)泄爆导管的5 L容器内甲烷/空气预混气爆炸。对火焰传播特性分析结果表明:容器内添加NaHCO3粉体可以极大地削弱导管内二次爆炸,且合适质量浓度的NaHCO3粉体可以消除二次爆炸。随着NaHCO3粉体质量浓度增加,容器内火焰结构逐渐不规则化,火焰到达容器末端时间延长,导管内火焰经历弱化到熄灭过程,不同质量浓度NaHCO3粉体导致3种火焰速度发展模式。对压力特性分析得知,导管内爆炸超压上升机理依赖于NaHCO3粉体质量浓度,粉体质量浓度较低时,容器中最大爆炸超压取决于二次爆炸产生的第二压力峰值,反之取决于火焰在容器触壁时产生的第一压力峰值。随着NaHCO3粉体质量浓度增加,超压峰值下降率先增加然后趋于稳定,表明质量浓度效应逐渐减弱。最后定量分析了导管-容器配置中火焰传播速度与爆炸超压的关系。  相似文献   

6.
油气是一种组分复杂的可燃气体,极易发生爆炸。为了研究油气在受限空间的泄爆规律,对不同体积分数油气在圆柱形直管道旁侧的单孔和双孔泄爆进行了可视化实验,获得了管道内外流场的爆炸超压规律和管道外流场的火焰特征。发现油气泄爆过程存在未燃气体从开孔泻出、形成“蘑菇云”、持续剧烈燃烧、逐渐熄灭4个阶段。通过对最大爆炸超压的数据对比分析,获得了双孔泄爆可以数倍分流单孔的外部最大超压;开孔位置距点火端越远,孔外最大超压越大;泄爆中外流场最大超压远大于内流场最大超压等结论。  相似文献   

7.
利用自主设计的5.00 m长矩形管道,对氢气体积分数为30%的氢气-空气预混气体进行了不同破膜压力(pv)下的系列燃爆实验,重点研究了pv对管道内外火焰传播行为及爆炸超压的影响。实验结果表明:管道内的火焰传播行为受pv影响显著。在靠近泄爆口的压力传感器所监测的压力-时间曲线上,可以观察到3个压力峰值(pb、pout、pext),分别对应于铝膜破裂、燃烧混合物泄放以及外部爆炸,大多数情况下,pb为最大压力峰值。管道内部最大超压随着pv升高而增大,但最大内部超压出现的位置受pv的影响。管道外部火焰传播行为与pv有关,但不同pv下外部火焰的最大长度无明显差异。最大外部超压与pv之间呈现非单调变化规律。  相似文献   

8.
在12 m3密闭空间内开展了甲烷-空气预混气体(甲烷体积分数为9.5%)的爆炸试验研究,改变点火位置,分析有泄爆口时点火位置对甲烷-空气爆炸超压和火焰形态的影响。结果表明:点火位置对Δp1的升压速度基本没有影响,Δp2的峰值随着点火位置远离泄爆口而增大,Δp4的峰值与点火位置的关系为:中心点火最大,尾部点火次之,前端点火最小。在所有位置,Δp1随着泄爆阈值的增大而增大,且增量相同;Δp2在前端点火和中心点火时随泄爆阈值的增加而消失,仅在尾部点火时出现;Δp4只有在中心点火时随泄爆阈值的增加而增加。外部火焰发展过程可以分为火球阶段和火焰喷射阶段,尾部点火和中心点火的火球大小及火焰喷射长度远大于前端点火。  相似文献   

9.
为研究不同约束端面下甲烷的爆炸特性,利用自行搭建的实验平台完成了多种约束端面下不同浓度甲烷的爆炸实验。研究表明:约束端面的性质对甲烷的爆炸特性有显著影响,约束端面的承压强度越高,甲烷的爆炸超压越大。单层PVC薄膜作用下,薄膜破裂,不会引起火焰与超压的振荡;而纸膜破裂后,管道内外气流的高速泄放和回流则会引起超压振荡,使火焰前锋波动并发生扭曲变形;两者共同作用时,PVC薄膜会阻碍气流的泄放与回流,加速超压衰减,抑制火焰和超压的振荡。然而,随着纸膜层数增加,破膜时管道内外形成的巨大压差会使约束端面完全破裂,降低PVC薄膜的抑制作用。当破膜难度达到一定程度时,约束端面作用下的泄压峰值成为不同浓度甲烷爆炸的最大超压峰值,且泄爆压力并不随甲烷浓度的改变而改变,因此不同浓度甲烷的爆炸超压在较高的泄爆压力下相同;此时,相同约束端面下不同浓度甲烷的压力振荡曲线在压力衰减的前半个周期内完全重合,管道内外的压差成为主导超压振荡的重要因素,而不同浓度甲烷的燃烧速率对超压振荡的影响则可以忽略不计。  相似文献   

10.
建立了顶部含有弱约束结构的受限空间油气爆炸实验系统,并对含有弱约束的受限空间中油气爆炸特性进行实验研究,获得超压变化规律及火焰发展特征。结果表明:(1)容器内部超压受泄流、外部爆炸、火焰扩张等因素的影响,出现多个峰值,并伴以强烈的振荡;容器外部超压随着距离的增大而减小,且竖直方向超压大于水平方向超压。(2)与无约束爆炸相比,弱约束结构对爆炸的影响主要体现在对爆炸超压的增强效应和对爆炸发展速率的滞后效应。(3)爆炸超压随着油气体积分数的增加先增大后减小,最大超压所对应的初始油气体积分数为1.79%。(4)容器外火焰发展过程分为初级燃烧阶段、过渡燃烧阶段、次级燃烧阶段,由于受Rayleigh-Talor不稳定、Helmholtz不稳定、斜压效应的影响,火焰出现褶皱和卷曲,最大火焰高度和直径分别为0.8和0.55 m。  相似文献   

11.
为研究泄压膜约束条件对甲烷/空气预混气体爆炸压力特性的影响,在方形火焰燃烧传播测试管道中布置压力传感器,开展不同泄压膜材料、泄压膜层数及泄压口位置实验。结果表明:牛皮纸和聚丙烯薄膜约束泄爆过程中,每增加一层泄压膜,管道内最大泄爆压力平均上升11.2%和12.3%。各强度泄压膜约束条件下,管道内最大泄爆压力随着泄压口位置接近点火端,均呈现Z形规律,当泄压口设置在距尾部端面0.25 m时,各曲线达到最小值,当泄压口设置在距尾部端面0.50 m时,各曲线出现最大值。  相似文献   

12.
通过揭示当量比对氢气云爆炸火焰形态、火焰半径和爆炸超压峰值的影响规律,本文拟建立耦合火焰自加速传播的氢气云爆炸超压预测模型。结果表明:氢气云爆炸火焰传播速度由大至小对应的当量比依次是Φ=2.0、Φ=1.0和Φ=0.8。Le<1.0和Le>1.0的氢气云爆炸火焰表面均出现胞格结构,胞格结构的出现必然会增加火焰燃烧表面积,进而出现“火焰自加速”现象。对于特定的当量比,随着压力监测点和点火位置间距的增加,爆炸超压峰值的正值和负值绝对值均单调减小;对于特定的压力监测点,爆炸超压峰值的正值和负值绝对值随当量比的关系存在些许差异;不同当量比和监测点位置的爆炸超压峰值的负值绝对值大都高于正值。耦合火焰自加速传播的氢气云爆炸超压预测模型可成功预测不同压力监测点薄膜破裂前氢气云爆炸超压的发展过程。  相似文献   

13.
为了研究大空间内预混可燃气体爆燃泄爆过程中的压力与火焰传播规律,在1.21 m3的方形空间内进行了不同体积分数乙烯气体和两种不同泄压面积的泄爆实验,针对泄压面积为0.18 m2、体积分数为7%的乙烯-空气预混气体爆燃泄爆过程进行了三维数值模拟研究。结果表明:不同泄爆条件下压力形式不同,小面积泄爆口开启后,压力先下降后上升且第2峰值较大,在高体积分数下超过第1峰值,大面积泄爆时第2峰值较小。数值模拟结果与实验得到的压力时程曲线趋势一致,与实验中观察到的外部火焰形态相似;泄爆口开启后引发的湍流效应,使得空间内火焰阵面变形和火焰传播速度显著加快,导致了小面积泄爆第2峰值压力较大。  相似文献   

14.
为了解受限空间内不同氮气体积分数φ对氢-空气泄爆的影响,在高1 m的顶部开口容器中进行了实验。结果表明:当φ≤40%时,容器内部的最大压力峰值由外部爆炸造成;而当φ>40%时,内部最大压力峰值则由泄爆膜破裂引起;在所有实验中,都观察到内部压力的亥姆霍兹振荡,其振荡频率随φ的增加而降低;声学振荡仅出现在φ=25%, 30%时;容器内3个不同压力监测点(靠近泄爆口、容器中心和接近容器底端)的最大爆炸超压pmax都随着φ的增加而降低,且整体上最大的pmax始终在爆炸容器底部附近出现。但当φ>40%时,3个监测点间pmax的差异可忽略不计;外部最大爆炸超压也随φ的增加而减小,且不论其大小如何,均对内部压力曲线有显著影响。  相似文献   

15.
泄爆诱导二次爆炸的实验研究   总被引:1,自引:1,他引:0  
在不同泄爆压力、不同泄爆面积和不同当量比的甲烷/空气预混气的实验条件下,采用容积为0.00814m3带导管的柱形泄爆容器和底端中心点火方式,进行了一系列泄爆实验。实验获得了内外流场测点的压力历史曲线。结果表明泄爆后外流场出现典型的破膜激波和二次爆炸波的双峰变化特征,前者不断下降,其强度随泄爆压力的增大而增大,而后者经历了上升和下降过程,强度随泄爆压力、泄爆面积和甲烷/空气当量比的增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号