首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
OFDM scheme is considered to enhance the data rate of visible light communication using lighting LEDs. In implementing this system, the inherent nonlinearity of LEDs is one of the factors of performance degradation. In this study, this LED nonlinearity is compensated by predistortion and performance enhancement is shown. Characterization and predistortion procedures of LEDs are proposed and experimental results are provided.  相似文献   

2.
A new method incorporating biased clipping orthogonal frequency division multiplexing (OFDM) is presented, which mitigates fiber nonlinear effects in a long-haul coherent optical OFDM (CO-OFDM) system. Under the scheme of the method, the wanted signal carried by odd subcarriers is orthogonal to clipping noise and a Mach-Zehnder modulator (MZM) performs the optimal OFDM signal up-converter from the radio frequency (RF) domain to the optical domain. Analysis and simulation results show that fiber nonlinear effects can be effectively mitigated by reducing the peak-to-average power ratio (PAPR) in biased clipping CO-OFDM system. The nonlinearity threshold (NLT) is improved by 5 dB with a reach of 240 km. With a fiber length up to 800 km, system Q value is improved by approximately 2.3, 1.2, and 0.6 dB at a chromatic dispersion of 6, 12, and 16 ps/(nm·km), respectively. Additionally, system Q reaches the maximum when direct currect (DC) bias is equal to the mean value of the OFDM waveform.  相似文献   

3.
陈雪梅  张静  易兴文  曾登科  杨合明  邱昆 《物理学报》2015,64(14):144203-144203
光正交频分复用系统中的光纤非线性效应制约着系统进一步的扩容. 针对此问题, 提出一种数字相干叠加的方法, 用于提高相干光正交频分复用系统对光纤非线性的容忍性. 仿真中, 5通道的波分复用下偏振复用相干光正交频分复用系统的每个通道传输四进制正交振幅调制映射的71.53 Gbit/s信号在光纤中传输400 km. 首先, 通道间隔为25 GHz, 与传统相干光正交频分复用系统相比, 色散补偿前后, 使用数字相干叠加的相干光正交频分复用系统的信噪比分别提升了6.02 dB和9.05 dB, 最佳入纤光功率均增大了2 dB; 其次, 通道间隔为50 GHz, 色散补偿前后, 信噪比分别提升了4.9 dB和8.75 dB. 通过理论推导及仿真, 验证了所提方法能有效消除相干光正交频分复用系统的一阶非线性失真, 进而提高系统对光纤非线性的容忍性.  相似文献   

4.
We propose the modified Kalman filter(MKF) using the received signal for observation and constructing an inverse process of the conventional Kalman filter(CKF) for polarization de-multiplexing in coherent optical(CO) orthogonal frequency-division multiplexing(OFDM) transmissions. The MKF can avoid the convergence error problem in CKF without matrix inverse operation and has a faster converging speed and a much larger tolerance to the process and measurement noise covariance, about two orders of magnitude more than those of CKF. We experimentally demonstrate the 12 Gbaud OFDM signal transmission over 480 km standard singlemode fiber. The performance of MKF and CKF outperforms pilot-aided polarization de-multiplexing with better accuracy and nonlinearity tolerance.  相似文献   

5.
Vanin E 《Optics letters》2011,36(22):4338-4340
It is well known that deliberate signal clipping in an intensity-modulated (IM) laser transmitter helps to overcome the optical orthogonal frequency division multiplexing (OFDM) system performance limitation that is related to the signal high peak-to-average power ratio. The amplitude of a clipped OFDM signal has to be optimized in order to minimize the optical power that is required to achieve a specified system performance. However, the signal clipping introduces nonlinear distortion (so-called clipping noise) and leads to a system performance penalty. In this Letter, the performance of the IM optical OFDM system with digital baseband clipping distortion in the transmitter and clipping noise compensation by means of signal restoration in the digital signal processing unit of the system receiver is analytically evaluated. It is demonstrated that the system bit-error ratio can be reduced by more than an order of magnitude, from 10(-3) to 3.5×10(-5), by applying only the first iteration of the signal restoration algorithm proposed in this Letter. The results of the analytical analysis are verified with brute-force numerical simulations based on direct error counting.  相似文献   

6.
In this paper, a deep learning and expert knowledge based receiver is proposed for underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM). Different from the existing deep learning based UWA OFDM receivers, the proposed receiver combines deep learning with the classical expert knowledge of block-based signal processing in UWA OFDM to improve system performance and interpretability. It performs joint channel estimation and signal detection by designing skip connection (SC) convolutional neural network (CNN) cascaded attention mechanism (AM) enhanced bi-directional long short-term memory (BiLSTM) network, abbreviated as SC-CNN-AM-BiLSTM network (SCABNet). Specifically, the channel estimation subnet is designed with SC-CNN to utilize the thought of image super-resolution to reconstruct the entire channel frequency response of all subcarriers. The signal detection subnet is designed with AM-BiLSTM to extract the correlations of received sequential data for signal detection. Especially with the AM, the signal detection subnet can focus more on effective information of the received distorted signal to train the optimal network weights to improve the accuracy of data recovery. The proposed SCABNet is evaluated by experimental data, and the results have demonstrated that the SCABNet has the lowest BER and robust performance compared to the traditional linear algorithm, deep learning based black-box receiver, and ComNet receiver. And the proposed SCABNet is effective and robust when multiple nonideal factors co-exist.  相似文献   

7.
A 320.6-GHz multi-band optical OFDM signal generation scheme consisting of continuous 4,104 subcarriers is demonstrated for 1-Tb/s coherent optical OFDM (CO-OFDM) transmission. The 36 uncorrelated orthogonal bands are generated using a recirculating frequency shifter (RFS) with single laser by adjusting the loop delay of RFS to be an integer multiple of OFDM symbol period. The principle and performance of this generation scheme is studied theoretically and experimentally. The 1-Tb/s CO-OFDM signal is successfully received after 600-km SSMF fiber transmission without any dispersion compensation.  相似文献   

8.
Phase pre-emphasis is theoretically studied and introduced to reduce peak-to-average power ratio (PAPR) in optical orthogonal frequency division multiplexing (OFDM) systems. In intensity modulated (IM) systems, simulations show noticeable PAPR reductions: 4.14 dB (N = 16) and 15.48 dB (N = 512) in time lens-based OFDM, N is the number of subcarriers. An equation is developed to calculate phase values and is proved to be effective. Optical implementing methods are proposed and analyzed. In a time lens-based OFDM system, phase pre-emphasis reduces fiber nonlinearity and results in a 5.2-dB increase of launch power at the bit error rate (BER) of 10 ?6 . Simulations also show similar PAPR reduction and fiber nonlinearity mitigation in optical inverse discrete Fourier transformer (OIDFT) based OFDM systems.  相似文献   

9.
胡善梅  陈林 《光子学报》2014,39(4):699-703
提出了两个并行相位调制器产生六倍频光毫米波并传输正交频分复用信号的全双工光纤无线通信系统.将2.5 Gbt/s的正交频分复用信号调制到60 GHz光毫米波上.从理论上分析了毫米波产生的原理,并分别模拟了毫米波信号承载OOK信号和正交频分复用信号在光纤中的传输性能.从而验证系统的可行性.仿真模拟结果表明,在光纤无线通信系统中,正交频分复用比非归零码更具有优势.  相似文献   

10.
Orthogonal frequency division multiplexing (OFDM) the signal processing is a key issue in wireless communication research. The multipath effect and Doppler shift of wireless communication channels can lead to distortion of the transmitted signal, which poses a considerable challenge to the information recovery of communication receivers. This paper presents the signal processing method of OFDM communication based on convolutional neural network (CNN). The method replaces all signal processing modules of the OFDM communication receiver with CNN, and the information is recovered by the CNN. In order to adapt to the processing of communication signals, we designed a one-dimensional convolutional neural network (1D-CONV-CNN) model as the neural network structures by this method. Simulation results indicate that the signal processing method effectively reduces the bit error rate (BER) and improves its performance compared with the conventional reception method under different channel conditions.  相似文献   

11.
Multipath interference induced power fading occurs when the transmission path lengths from the light emitting diodes to a single receiver are different in a visible light communication system. To solve this problem, we apply a QR-decomposition-based channel equalizer(QR-CE) to achieve successive interference cancellation for a discrete Fourier transform spreading(DFT-S) orthogonal frequency division multiplexing(OFDM) signal.We experimentally demonstrate a 200 Mb/s DFT-S OFDM over a 2 m free-space transmission. The experimental results show that a DFT-S OFDM with QR-CE attains much better bit error rate performance than a DFT-S OFDM with conventional CEs. The impacts of several parameters on a QR-CE are also investigated.  相似文献   

12.
Du LB  Lowery AJ 《Optics letters》2011,36(9):1647-1649
A pilot-based nonlinearity compensator (PB-NLC) is shown in this Letter to be an effective method for compensating cross-phase modulation (XPM) in coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. An unmodulated pilot tone is transmitted at the center of each OFDM channel to detect phase errors caused by the Kerr effect, which converts intensity fluctuations from all channels to phase errors. The pilots are then used to cancel the XPM phase errors for each OFDM channel at the receiver after each channel's self-phase modulation (SPM) has been compensated, using its intensity waveform to determine its SPM. Numerical simulations of a 58 Gb/s single polarization 2375 km system with inline dispersion compensation show that the signal quality, Q, at the optimal launch power is increased by 2.4 dB if SPM compensation is used before the PB-NLC. This contrasts with only a 0.9 dB improvement if the PB-NLC is used without an SPM compensator for the same link. This shows the PB-NLC can effectively mitigate XPM but not SPM.  相似文献   

13.
In this paper, the problem of spectrum sensing of OFDM signals for cognitive radios is considered. It is proposed to detect the cyclostationary features introduced in an OFDM signal due to inter-pilot correlation. The performance of the proposed detector is derived and verified in case of AWGN channels. It is observed that the performance of cyclostationary detectors relies on the knowledge of the exact value of the cyclic frequency of the signal of interest. However, an offset in the cyclic frequency may arise due to several reasons. Therefore, for the proposed detector to perform reliably, there is a need to estimate the cyclic frequency offset. The Cramer–Rao bound for the cyclic frequency offset (CFO) estimator is derived, and based on it, two algorithms to estimate and compensate for the CFO are proposed. Simulation results are then used to study the performance of the proposed detection technique under Rayleigh fading both in the presence and the absence of CFO. The performance of the proposed system model is also studied under fast fading, and an alternative test statistic is proposed.  相似文献   

14.
Wavelength scanned interferometry allows the simultaneous measurement of top surface shape and optical thickness variation of a transparent object consisting of several parallel surfaces. Interference signals from these surfaces can be separated in frequency space, and their phases are detected by discrete Fourier analysis. However, these signal frequencies are shifted from the detection frequency by the refractive index dispersion of the object and a nonlinearity of the wavelength scanning. The Fourier analysis is sensitive to the detuning of the signal frequency and suffers from the multiple-beam interference noise. Conventional error-compensating algorithms cannot be applied to an object consisting of more than three reflecting surfaces. We derive a new 2N-1 sample error-compensating algorithm, which allows the phase detection of any order of harmonic frequency among the interference signals. The new algorithm suppresses the effect of signal frequency detuning as well as the multiple-beam interference noise and can be applied to the measurement of complex objects consisting of more than three reflecting surfaces.  相似文献   

15.
激光模拟检测技术在激光设备的检修保障中有着广泛的应用,其中激光设备接收系统接收由激光信号模拟器发出的特定波长的激光脉冲并观测接收系统的反应结果,是评价激光设备接收性能的一种有效手段。在对LED发光机理分析的基础上,提出了一种运用LED模拟某1.06 制导激光脉冲信号的方法,并创造性设计了频率占空比易调的LED激光信号模拟器驱动电路。经过实验验证,该驱动电路具有良好的频率占空比任意可调性能和较高的推广应用价值。  相似文献   

16.
白光富  江阳  胡林  田晶  訾月姣 《物理学报》2017,66(19):194204-194204
基于正交频分复用技术的无源光网络中,光网络单元为了获得其所属小部分下行数据,需高采样率模数转换器将所有频宽的信号恢复才能分出其所需要数据.同时正交频分信号峰均比很高,传输中容易引起非线性效应.为此,本文提出一种基于低采样模数转换器的延时复用频分多址无源光网络.在光线路终端将数据序列交错排序并在时域映射为正交幅度调制信号;再通过离散傅里叶变换扩频技术,将信号转换为频域信号并映射到子载波上.通过预先发送和回传训练信号,估测包括延时采样和低采样接收在内的信道频响;再将频域信号利用估测信息在光线路终端做预处理,从而使信号传输中的失真得到有效预补偿.本文实验演示了含有多个光网络单元的系统,对于含有M个光网络单元的无源光网络,模数转换器的采样率可以降低到1/M Nyquist采样率,实验中模数转换器的采样率可以降低到1/32 Nyquist采样率;由于下行信号通过光线路终端预处理实现失真预补偿,光网络单元接收到的信号不需要均衡,不需要傅里叶变换和傅里叶逆变换,避免了与之对应的相关计算量,降低了光网络单元的计算复杂度;由于使用了扩频技术,信号波形具有更低的峰均比,从而降低了非线性对信号的影响,增加了功率预算.此外,随着光网络单元的增加,信号的误码率几乎没有增加,光网络单元个数增加到32时,向前纠错极限为10~(-3)的功率代价小于0.5 dB;系统对光网络单元采样时刻偏离具有一定容限;25 km光纤传输的功率代价大约0.5 dB.理论和实验均证明本方案能够简化光网络单元,降低无源光网络的成本;与传统的无源光网络相比具有明显优势.  相似文献   

17.
This work addresses the analytical and numerical investigations of the transmission performance of an optical Single Sideband (SSB) modulation technique generated by a Mach Zehnder Modulator (MZM) with a 90° and 120° hybrid coupler. It takes into account the problem of chromatic dispersion in single mode fibers in Passive Optical Networks (PON), which severely degrades the performance of the system. Considering the transmission length of the fiber, the SSB modulation generated by maintaining a phase shift of π/2 between the two electrodes of the MZM provides better receiver sensitivity. However, the power of higher-order harmonics generated due to the nonlinearity of the MZM is directly proportional to the modulation index, making the SSB look like a quasi-double sideband (DSB) and causing power fading due to chromatic dispersion. To eliminate one of the second-order harmonics, the SSB signal based on an MZM with a 120° hybrid coupler is simulated. An analytical model of conventional SSB using 90° and 120° hybrid couplers is established. The latter suppresses unwanted (upper/lower) first-order and second-order (lower/upper) sidebands. For the analysis, a varying quadrature amplitude modulation (QAM) Orthogonal Frequency Division Multiplexing (OFDM) signal with a data rate of 5 Gb/s is upconverted using both of the SSB techniques and is transmitted over a distance of 75 km in Single Mode Fiber (SMF). The simulation results show that the SSB with 120° hybrid coupler proves to be more immune to chromatic dispersion as compared to the conventional SSB technique. This is in tandem with the theoretical analysis presented in the article.  相似文献   

18.
提出一种伪装水声通信调制方法,将原始海豚whistles信号表示为以自身DFT系数为数据符号的正交频分复用(OFDM)块,采用m序列对OFDM块中的子载波幅度进行指数调制实现正交频分复用循环移位键控(OFDM-CSK)扩频调制,分别采用PEAQ算法与相关系数计算听觉与波形相似度,作为两个客观评价结果约束OFDM子载波幅度的修改程度,保证伪装的效果。提出匹配滤波与正交匹配追踪结合的自同步算法,使伪装通信信号帧结构的设计保持原始whistles叫声的模式,提高了伪装的效果。通过CSK扩频技术很大程度地提高系统的频带利用率且通过垂直阵虚拟时间反转信道均衡技术提高了通信系统的稳健性。海上试验验证了伪装通信方法的可行性。   相似文献   

19.
We show experimentally and by simulation a performance enhancement of a directly modulated 10 Gb/s optical Orthogonal Frequency Division Multiplexing (OFDM) system due to external optical injection. The experiment is performed back to back and over 12 km of single mode fiber. The injection extends the range of linear operation of the laser and therefore extends the usable bandwidth for direct modulation formats which are susceptible to nonlinearity, such as OFDM. Nonlinearity in the system and its reduction due to injection are estimated by means of a two tone test. Additionally the performance enhancement on OFDM systems was verified in both simulation and experimentally by the comparisons of the average Bit Error Rate (BER) and Error Vector Magnitude (EVM).  相似文献   

20.
This paper presents the first implementation of a two-way relay network based on the principle of physical-layer network coding (PNC). To date, only a simplified version of PNC, called analog network coding (ANC), has been successfully implemented. The advantage of ANC is that it is simple to implement; the disadvantage, on the other hand, is that the relay amplifies the noise along with the signal before forwarding the signal. PNC systems in which the relay performs XOR or other denoising PNC mappings of the received signal have the potential for significantly better performance. However, the implementation of such PNC systems poses many challenges. For example, the relay in a PNC system must be able to deal with symbol and carrier-phase asynchronies of the simultaneous signals received from multiple nodes, and the relay must perform channel estimation before detecting the signals. We investigate a PNC implementation in the frequency domain, referred to as FPNC, to tackle these challenges. FPNC is based on OFDM. In FPNC, XOR mapping is performed on the OFDM samples in each subcarrier rather than on the samples in the time domain. We implement FPNC on the universal soft radio peripheral (USRP) platform. Our implementation requires only moderate modifications of the packet preamble design of 802.11a/g OFDM PHY. With the help of the cyclic prefix (CP) in OFDM, symbol asynchrony and the multi-path fading effects can be dealt with simultaneously in a similar fashion. Our experimental results show that symbol-synchronous and symbol-asynchronous FPNC have essentially the same BER performance, for both channel-coded and non-channel-coded FPNC systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号