共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
Yuanshuai QIN Zhijun WANG Chi FENG Shuhui LIU Weiping DOU Weilong CHEN Wangsheng WANG Hongming XIE Yuan HE 《原子核物理评论》2021,38(1):30-37
在C-ADS直线加速器样机中,为了描述束流相空间分布,需要精确测量束流在RFQ出口处的参数。束流横向信息已通过发射度重构测量获得,束流光学也得到了验证。采用了一种用BPM的SUM信号测量束流纵向参数的方法。在实验中,调节两台聚束器的聚束腔压并记录其下游BPM上的SUM信号。通过粒子群算法和TraceWin模拟相结合的方法,得到了考虑空间电荷效应的测量结果。测得的发射度与Toutatis中的模拟值相近。 相似文献
6.
7.
二次电子发射直接影响法拉第探测器测量质子束流的精度,减小或消除二次电子发射的影响是提高束流测量精度的关键。根据二次电子补偿原理设计了二次电子补偿型同轴法拉第探测器,实验发现探测器测量质子束流强度时不能完全实现二次电子补偿。为改进和完善探测器的设计,从理论上分析了补偿片未能完全消除二次电子对束流测量影响的原因,是由于补偿片前向发射二次电子数目大于收集极后向发射二次电子数目所致。为此设计了质子束穿过金属箔发射二次电子测量装置,测量得到能量为5~10 MeV质子穿过10 m厚铜箔时前向与后向发射二次电子产额,验证了理论分析的正确性。 相似文献
8.
二次电子发射直接影响法拉第探测器测量质子束流的精度,减小或消除二次电子发射的影响是提高束流测量精度的关键。根据二次电子补偿原理设计了二次电子补偿型同轴法拉第探测器,实验发现探测器测量质子束流强度时不能完全实现二次电子补偿。为改进和完善探测器的设计,从理论上分析了补偿片未能完全消除二次电子对束流测量影响的原因,是由于补偿片前向发射二次电子数目大于收集极后向发射二次电子数目所致。为此设计了质子束穿过金属箔发射二次电子测量装置,测量得到能量为5~10MeV质子穿过10μm厚铜箔时前向与后向发射二次电子产额,验证了理论分析的正确性。 相似文献
9.
10.
采用单缝单针法测量电子枪束流的发射度。用可移动的宽0.1mm单缝取样,与缝平行的直径为0.1mm匀速运动的探针接收穿过狭缝的束流。 缝、针距离为59mm,角分辨率为3.4mrad,系统最大接收度为0.64cm·rad。缝、针间设有平行度调节装置,提高了测量精度;狭缝板设有水冷结构,可承受较大的束流功率,采用良好的屏蔽及合理的二次电子抑制结构,清晰地测出了10~(-10)A量级的弱信号电流。所测相图的相对误差约为8%。利用该装置方便地测得了电子枪高压、栅控脉冲电压、阴极温度、脉冲流强等不同条件下的发射度变化。 相似文献
11.
Beam emittance is one of the most important parameters for electron sources. To investigate the beam emittance of the 3.5-cell DC-SC photocathode injector developed at Peking University, a multi-slit emittance measurement device has been designed and manufactured. The designed slit width, mask thickness and beamlet drift length are 100 μ m, 3 mm and 430 mm respectively. It is suitable for the electron beam with energy of about 5 MeV and the average current less than 0.1 mA. The preliminary measurement result of the rms emittance of the electron beam produced by the DC-SC injector is about 5-7 mm·mrad. 相似文献
12.
根据同步光与储存环中的束流信号具有相同的时间结构的原理,测量同步光脉冲的半高全宽值可以计算出束团的长度。根据合肥光源的特点和实际需要,选择快速光电接收器搭配高速高带宽示波器作为在线测量束团长度和纵向分布等的主要手段。对单束团模式下束团长度随流强和高频腔腔压的变化趋势进行了测量。测量结果表明:束团长度与腔压的0.3次方成反比,比理论值0.5小;而束团长度随流强的增长率为2.0 ps/mA。通过测量纵向量子寿命进行了能散随流强变化的间接测量,结果表明,束团的拉伸是能散变化和势阱效应共同作用的结果。 相似文献
13.
One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad. 相似文献
14.
One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad. 相似文献
15.
16.
17.
The Electro-optical sampling delay scanning technique can be used for electron beam bunch length measurement.A novel non-synchronous delay scanning technique based on the electro-optical sampling measurements is presented.Based on Beijing Free Electron Laser(BFEL),the electron beam bunch length was measured with the electro-optical sampling technique for the first time in China.The result shows that the electron beam bunch length at BFEL is about 5.6±1.2 ps. 相似文献
18.
The Electro-optical sampling delay scanning technique can be used for electron beam bunch length measurement. A novel non-synchronous delay scanning technique based on the electro-optical sampling measurements is presented. Based on Beijing Free Electron Laser (BFEL), the electron beam bunch length was measured with the electro-optical sampling technique for the first time in China. The result shows that the electron beam bunch length at BFEL is about 5.6±1.2 ps. 相似文献
19.
We consider a scheme to generate a sub-picosecond electron bunch in the photocathode rf gun by im-proving the acceleration gradient in the gun, suitably tuning the bunch charge, the laser spot size and the acceleration phase, and reducing the growth of transverse emittance by laser shaping. A nondestructive technique is also reported to measure the electron bunch length, by measuring the high-frequency spectrum of wakefield radiation which is caused by the passage of a relativistic electron bunch through a channel surrounded by a dielectric. 相似文献