首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
为系统地评估城市地下浅埋管沟可燃气体爆炸的灾害后果,利用FLACS软件模拟得到了可燃气体的爆炸荷载,并分析了该灾害对建筑物破坏和人员伤害的危险距离及影响因素。结果表明:当点火位置靠近管沟中间位置时,超压峰值和危险距离较大;泄爆口的大小对危险距离的影响不大,而对离泄爆口较近处的超压峰值影响较大;气云长度越长,超压峰值和危险距离也越大,但增幅逐渐减小直至不变;管沟的横截面面积越大,超压峰值和危险距离也越大;为避免造成严重的灾害后果,高耸建筑物和密集人群应远离泄爆口。  相似文献   

2.
在12 m3密闭空间内开展了甲烷-空气预混气体(甲烷体积分数为9.5%)的爆炸试验研究,改变点火位置,分析有泄爆口时点火位置对甲烷-空气爆炸超压和火焰形态的影响。结果表明:点火位置对Δp1的升压速度基本没有影响,Δp2的峰值随着点火位置远离泄爆口而增大,Δp4的峰值与点火位置的关系为:中心点火最大,尾部点火次之,前端点火最小。在所有位置,Δp1随着泄爆阈值的增大而增大,且增量相同;Δp2在前端点火和中心点火时随泄爆阈值的增加而消失,仅在尾部点火时出现;Δp4只有在中心点火时随泄爆阈值的增加而增加。外部火焰发展过程可以分为火球阶段和火焰喷射阶段,尾部点火和中心点火的火球大小及火焰喷射长度远大于前端点火。  相似文献   

3.
利用自主设计的5.00 m长矩形管道,对氢气体积分数为30%的氢气-空气预混气体进行了不同破膜压力(pv)下的系列燃爆实验,重点研究了pv对管道内外火焰传播行为及爆炸超压的影响。实验结果表明:管道内的火焰传播行为受pv影响显著。在靠近泄爆口的压力传感器所监测的压力-时间曲线上,可以观察到3个压力峰值(pb、pout、pext),分别对应于铝膜破裂、燃烧混合物泄放以及外部爆炸,大多数情况下,pb为最大压力峰值。管道内部最大超压随着pv升高而增大,但最大内部超压出现的位置受pv的影响。管道外部火焰传播行为与pv有关,但不同pv下外部火焰的最大长度无明显差异。最大外部超压与pv之间呈现非单调变化规律。  相似文献   

4.
运用非线性显式动力有限元程序LS-DYNA,基于多物质Euler算法,对TNT炸药和乙炔-空气混合气体两种爆炸源在自由大气场中爆炸产生的冲击波荷载特征参数进行数值模拟,比较两种爆源产生的冲击波压力传播规律。基于爆能等效原理,按超压相等的原则给出了气体爆炸名义比例距离计算公式。结果表明,基于Euler算法可以较好地描述乙炔-空气混合气体爆炸空气冲击波传播规律,爆炸压力随着距爆源距离的增大而迅速衰减,且两种爆源产生的冲击波超压峰值误差随着冲击波传播距离的增大而逐渐减小。采用名义比例距离公式修正后,气体爆炸与炸药爆炸冲击波计算误差可以得到有效控制。当爆炸冲击波超压小于0.5MPa时,可以采用乙炔-空气混合气体代替化学炸药进行模爆器内爆炸实验加载。  相似文献   

5.
为了研究惰性粉体对导管泄爆过程的影响,采用质量浓度C为0、40、80、120、160、200 、240 g/m3的碳酸氢钠(NaHCO3)粉体,分别抑制连接不同长度(250 mm、500 mm、750 mm)泄爆导管的5 L容器内甲烷/空气预混气爆炸。对火焰传播特性分析结果表明:容器内添加NaHCO3粉体可以极大地削弱导管内二次爆炸,且合适质量浓度的NaHCO3粉体可以消除二次爆炸。随着NaHCO3粉体质量浓度增加,容器内火焰结构逐渐不规则化,火焰到达容器末端时间延长,导管内火焰经历弱化到熄灭过程,不同质量浓度NaHCO3粉体导致3种火焰速度发展模式。对压力特性分析得知,导管内爆炸超压上升机理依赖于NaHCO3粉体质量浓度,粉体质量浓度较低时,容器中最大爆炸超压取决于二次爆炸产生的第二压力峰值,反之取决于火焰在容器触壁时产生的第一压力峰值。随着NaHCO3粉体质量浓度增加,超压峰值下降率先增加然后趋于稳定,表明质量浓度效应逐渐减弱。最后定量分析了导管-容器配置中火焰传播速度与爆炸超压的关系。  相似文献   

6.
为了研究CO2和超细水雾对9.5%甲烷/空气初期爆炸特性的影响,采用高速纹影系统和定容燃烧弹对9.5%甲烷/空气初期爆炸特性进行了研究。分别改变CO2稀释体积分数和超细水雾质量浓度,分析在二者单独和共同作用下球形火焰传播过程、火焰传播速度和爆炸超压的变化规律。结果表明:58.3 g/m3超细水雾增强了火焰不稳定性,促进了火焰加速和爆炸超压增加,表明超细水雾不足能产生促爆作用,只有当超细水雾充足时才会抑制甲烷爆炸;CO2和超细水雾共同作用时能避免因超细水雾带来的促爆现象,可以明显减弱火焰不稳定性,减小火焰传播速度,降低爆炸超压和平均压升速率,以及明显推迟超压峰值来临时间。  相似文献   

7.
为了研究活性材料爆炸驱动反应特性,基于粉末压制成型工艺,制备了Al/PTFE、Al/Ni两种典型的活性材料及Al2O3/PTFE、Al2O3/PTFE/W惰性材料。通过爆炸驱动试验,并结合高速摄影、远红外热像仪以及峰值超压测试技术,分析了不同活性材料壳体装药爆炸火球、温度场分布及空气冲击波峰值超压等特性。同时,在炸药爆炸空气冲击波峰值超压经验计算模型中考虑了活性材料释放的化学能,分析了反应释放能量对空气冲击波的影响规律。结果表明:活性材料在爆炸驱动过程中经历了强加载条件下反应、产生碎片并向四周飞散、撞击钢板及后续反应等阶段。活性材料对炸药爆炸产生的空气冲击波具有强化作用,爆炸加载瞬间材料仅发生了部分化学反应。  相似文献   

8.
为了研究大空间内预混可燃气体爆燃泄爆过程中的压力与火焰传播规律,在1.21 m3的方形空间内进行了不同体积分数乙烯气体和两种不同泄压面积的泄爆实验,针对泄压面积为0.18 m2、体积分数为7%的乙烯-空气预混气体爆燃泄爆过程进行了三维数值模拟研究。结果表明:不同泄爆条件下压力形式不同,小面积泄爆口开启后,压力先下降后上升且第2峰值较大,在高体积分数下超过第1峰值,大面积泄爆时第2峰值较小。数值模拟结果与实验得到的压力时程曲线趋势一致,与实验中观察到的外部火焰形态相似;泄爆口开启后引发的湍流效应,使得空间内火焰阵面变形和火焰传播速度显著加快,导致了小面积泄爆第2峰值压力较大。  相似文献   

9.
为有效表征不同海拔坑道内爆炸冲击波的传播特征,利用非线性显式动力学有限元软件AUTODYN,研究了海拔高度对长直坑道内爆炸冲击波传播的影响规律,探讨了高海拔环境对坑道内冲击波传播的影响,基于量纲分析,建立了适用于不同海拔高度典型坑道内冲击波峰值超压的计算模型,并通过数值计算进行了验证。结果表明:随着海拔高度升高,坑道内爆炸冲击波波阵面传播速度与径向的冲击波参数偏差增大,平面波形成距离增加,冲击波峰值超压降低;在0~4 000 m范围内,海拔高度每升高1 000 m,冲击波冲量降低约0.91%。结合Sachs无量纲修正方法和量纲分析,推导出不同海拔高度冲击波峰值超压的理论分析模型,模型计算结果与数值计算结果的相对偏差不大于10%,能够为高海拔环境下坑道内爆炸冲击波的传播提供理论依据。  相似文献   

10.
为研究汽油-空气混合气体密闭爆炸和泄爆特性,采用可视化方管进行了两种爆炸模式实验研究,并基于壁面自适应局部涡黏(wall-adapting local eddy-viscosity,WALE)模型和Zimont预混火焰模型进行了数值模拟研究。结果表明:(1)泄爆工况超压-时序曲线峰值数量多于密闭爆炸工况,且泄爆工况超压-时序曲线存在剧烈的类似简谐振动的振荡,而密闭爆炸工况的爆炸超压特征参数显著高于泄爆工况;(2)密闭爆炸工况最大火焰传播速度明显小于泄爆工况,但前者在火焰传播初期即达到最大值,而后者在火焰传播末期才达到最大值;(3)密闭爆炸工况出现郁金香形火焰,而泄爆工况出现蘑菇形火焰,郁金香火焰的形成与管道内火焰锋面、流场和流场动压三者之间耦合效应相关,蘑菇形火焰由外部流场湍流和斜压效应的共同作用引起。  相似文献   

11.
为研究无约束条件下甲烷(CH4)/空气(air)预混气体的燃爆特性,以乳胶气球为反应容器开展了甲烷爆炸实验,结合Chemkin模拟和改进的比色测温技术,研究了不同当量比下甲烷/空气预混气体的火焰传播速度、爆炸超压及温度场分布等特征以及静置时间对预混气体燃爆特性的影响。实验结果表明:甲烷/空气预混气体的爆炸火焰传播速度呈振荡分布,当量比为0.83、1.06、1.30和1.55时的平均火焰传播速度分别为1.554m·s-1、2.122m·s-1、1.892m·s-1和1.428m·s-1;峰值超压随当量比的增加呈先增大后减小的趋势,当量比为1.06时基元反应CH3·+O2?O·+CH3O·的敏感性系数最大,从而加速了生成二氧化碳(CO2)的链反应,使得燃烧化学反应最彻底,峰值超压值最大;静置时间对火焰传播速度和爆炸峰值压力影响显著,最佳静置时间为6min;随着当量比的增大,爆炸火焰的平均温度呈现...  相似文献   

12.
为了解受限空间内不同氮气体积分数φ对氢-空气泄爆的影响,在高1 m的顶部开口容器中进行了实验。结果表明:当φ≤40%时,容器内部的最大压力峰值由外部爆炸造成;而当φ>40%时,内部最大压力峰值则由泄爆膜破裂引起;在所有实验中,都观察到内部压力的亥姆霍兹振荡,其振荡频率随φ的增加而降低;声学振荡仅出现在φ=25%, 30%时;容器内3个不同压力监测点(靠近泄爆口、容器中心和接近容器底端)的最大爆炸超压pmax都随着φ的增加而降低,且整体上最大的pmax始终在爆炸容器底部附近出现。但当φ>40%时,3个监测点间pmax的差异可忽略不计;外部最大爆炸超压也随φ的增加而减小,且不论其大小如何,均对内部压力曲线有显著影响。  相似文献   

13.
为研究不同形状地下管廊内燃气爆炸冲击波的传播规律,利用LS-DYNA动力有限元软件,基于流固耦合算法,对燃气爆炸在地下管廊内的传播过程进行了数值模拟;分析了爆炸冲击波在两种管廊内的传播规律以及管廊结构的动力响应规律。结果表明:在整个爆炸过程中,圆形管廊受压较为均匀,但圆形管廊爆源附近出现正负压变化,使波阵面内部形成负压区,而方形管廊正负压变化不明显;方形管廊结构的转角处,速度值和位移值都比较小,但受到的压力最大,在实际工程中,应加强此处结构的保护。与爆源水平距离最近的圆形截面管廊上测点的超压峰值、振荡幅度和残余变形都远低于方形截面管廊测点;但与方形截面管廊测点相比,圆形截面管廊测点的速度方向改变较为频繁,容易造成结构的振荡,导致结构发生失稳破坏。  相似文献   

14.
油气是一种组分复杂的可燃气体,极易发生爆炸。为了研究油气在受限空间的泄爆规律,对不同体积分数油气在圆柱形直管道旁侧的单孔和双孔泄爆进行了可视化实验,获得了管道内外流场的爆炸超压规律和管道外流场的火焰特征。发现油气泄爆过程存在未燃气体从开孔泻出、形成“蘑菇云”、持续剧烈燃烧、逐渐熄灭4个阶段。通过对最大爆炸超压的数据对比分析,获得了双孔泄爆可以数倍分流单孔的外部最大超压;开孔位置距点火端越远,孔外最大超压越大;泄爆中外流场最大超压远大于内流场最大超压等结论。  相似文献   

15.
利用自主搭建的泄爆容器结构响应测试系统,开展了不同泄爆面积条件下甲烷-空气预混气体泄爆实验,结合振动加速度、内部超压、火焰演化和信号频率-时间分布等探究了泄爆面积对容器结构响应的影响特征及机制。研究发现:(1)容器振动加速度曲线和内部超压曲线具有相似的变化趋势,两者均存在双峰现象,且两者一一对应,但加速度峰值出现略迟;随着无量纲泄爆系数增大,第1个内部超压和加速度峰值主体为增大趋势,而第2个内部超压和加速度峰值的变化趋势为先减小后增大再减小;(2)火焰未到达泄爆口之前,上部的火焰平均速度随着无量纲泄爆系数增大而减小,无量纲泄爆系数较小时火焰较早从泄爆口喷出;(3)在当前实验条件下,当无量纲泄爆系数为25.00时,热声耦合现象最剧烈,表现为最大幅值的振动响应和最大能量的高频振荡,而随着无量纲泄爆系数进一步增大或者减小,热声耦合现象逐渐衰减。  相似文献   

16.
隧道开挖爆破产生的空气冲击波的破坏效应,将会对人员、机具设备与周围环境造成危害。隧道钻孔爆破冲击波的影响因素比裸露药包爆炸更多、更复杂,研究其衰减规律对采取合适的防护措施意义重大。本文中开展了时速350 km双线铁路大断面隧道钻孔爆破空气冲击波的现场测试,分析了不同工况下冲击波传播规律及影响因素。结果表明:钻爆冲击波超压时程曲线存在多个不同幅值的超压波峰,波峰之间具有明显微差延时的短间隔性,传播至远场未形成稳定的单一平面波,与单一药包爆炸冲击波的传播规律存在差异;钻爆冲击波超压信号由多段与微差延时相对应的子信号叠加而成,子信号数量与毫秒延期雷管段数相同,呈现出典型的时域特征;相同爆破条件下,大断面隧道钻爆时的乳化炸药冲击波转化因数小于小断面巷道工况下的;相较于总药量及最大段药量,按掏槽药量计算的超压峰值与实测超压峰值之间的相关性最强,钻爆冲击波最大超压峰值宜按掏槽段炸药TNT当量确定;隧道内大型机械设备等障碍物改变了钻爆冲击波流场的传播规律,呈现较明显的叠加放大效应。  相似文献   

17.
高压泄爆导致的二次爆炸   总被引:2,自引:0,他引:2  
基于计算结果和相关实验结果,通过理论分析,对高压泄爆导致的二次爆炸机理进行了系统的阐述。泄爆后,泄出的高压可燃气体在泄爆口附近形成可燃云团,由于欠膨胀,云团内存在稀疏波低压区和Mach干高压区。火焰射流泄出后,在一定条件下,可使Mach干高压区内的可燃云团爆炸式燃烧,压力迅速上升,以致产生二次爆炸。  相似文献   

18.
提出了一种基于地震波触发的战斗部爆炸冲击波超压测试方法,该测试方法能可靠获取战斗部动爆冲击波超压峰值。采用提出的测试方法对着靶速度为0、535和980 m/s的战斗部空中爆炸冲击波分别进行了测试,并对战斗部动爆冲击波超压峰值测试结果和经验公式计算值进行了对比,定量分析了战斗部速度对冲击波压力场分布的影响。最后,在实测数据的基础上采用薄板样条插值方法重建了战斗部动爆冲击波超压三维可视化模型,为实战复杂环境下基于实测数据研究动爆冲击波特性提供了依据。  相似文献   

19.
崔洋洋  王成  钱琛庚  谷恭天  高扬 《力学学报》2022,54(8):2173-2193
近年来氢的使用范围逐渐发展到各个领域, 含氢多元混合物气体在工业生产及生活燃料中被普遍使用. 为了保障含氢气体在生产、运输、使用等各个环节的安全性, 构建了开放空间混合气体爆炸测试实验系统, 研究了H2/CH4/空气混合气体爆炸压力及火焰传播特性, 给出了不同氢摩尔分数(100%, 75%, 66.67%, 50%, 33.33%)、混合气体当量比(0.8, 1.0, 1.1, 1.2, 1.4)、可燃云团尺寸(1 m3, 4 m3, 8 m3)及障碍物约束等因素对混合气体爆炸压力及火焰的影响规律. 基于经典TNT当量法, 建立了考虑混合气体组分比及可燃云团尺寸的最大爆炸超压预测模型, 修正了爆炸火焰传播半径理论模型. 结合高精度数值模拟技术揭示了加气站内建筑结构对混合气体爆炸的影响. 研究表明, 氢气的加入能够明显增强气体爆炸强度, 最大爆炸超压、火焰传播速度均随氢摩尔分数的增加而增大, 随当量比的增大先增大后减小, 当量比为1.1~1.2时最大; 通过对大尺度混合气体爆炸数值仿真与分析发现, 加气站内不同建构筑物条件下爆炸火焰传播距离、传播速度、最大爆炸超压等关键参数明显不同, 顶部和背部同时约束时, 爆炸伤害范围及事故后果最严重, 因此在划定加气站安全距离时, 应充分考虑不同建筑结构的影响.   相似文献   

20.
为分析多孔材料对预混气体爆炸特性参数的影响效果,采用自主搭建的爆炸实验平台,探究不同孔隙度和厚度的多孔材料对当量比为1的甲烷/空气预混气体爆炸的作用行为。实验研究表明,不同孔隙度的多孔材料对爆炸火焰和超压具有促进或抑制两种不同的影响。孔隙度较小时,爆燃火焰传播速度随着材料厚度的增大而降低,并在厚度较大时,火焰有短暂的传播延时现象。孔隙度较大时,预混火焰冲击多孔材料时发生淬熄,但随后一段时间内,由于负压抽吸作用,在已爆区域一侧的材料表面产生扩散燃烧现象,且扩散燃烧程度与材料厚度成反比关系。多孔材料的固相结构能降低压力的泄放效率,同时可吸收能量,进而提高爆炸超压的上升速率,降低超压峰值。当每英寸长度孔数δ=10的多孔材料促进火焰传播时,与当量比为1的预混气体爆炸相比,超压峰值最大可提高约2倍,造成更严重的后果。火焰冲击δ=20的多孔材料时发生淬熄,最大超压衰减可达47.17%,δ=30时最大超压衰减了24.62%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号