Based on the acceleration data measured by penetration experiments with ogive-nose projectiles into semi-infinite concrete targets, a fuzzy method which can calculate the real-time penetration depth was developed. In the proposed method, the whole process of penetration was divided into three stages according to the instantaneous velocity, and each stage was described by different models. By judging the calculation error, threshold velocities between stages were automatically determined. Meanwhile, the striking velocity of the penetration process was calculated using the acceleration in whole trajectory. The calculated values by model are in reasonably good agreement with the measured data from experiments. 相似文献
The process of penetration of a projectile into a semi-infinitetarget is studied in this paper. Using certain assumptions,
the propagation of plastic wave in the target is analyzed and the pressure on the surface of penetrator is given. The results
calculated from the formulas of this paper agree well with experimental data and numerical results. 相似文献
A dynamic spherical cavity-expansion penetration model is suggested herein to predict the penetration and perforation of concrete targets struck normally by ogivalnosed projectiles.Shear dilatancy as well as compressibility of the material in comminuted region are considered in the paper by introducing a dilatant-kinematic relation.A procedure is first presented to compute the radial stress at the cavity surface and then a numerical method is used to calculate the results of penetration and perforation with friction being taken into account.The influences of various target parameters such as shear strength,bulk modulus,density,Poisson’s ratio and tensile strength on the depth of penetration are delineated.It is shown that the model predictions are in good agreement with available experimental data.It is also shown that the shear strength plays a dominant role in the target resistance to penetration. 相似文献
It is well established that confinement pressure inhibits comminution and fragment-flow during projectile penetration of ceramics. Here, a high-pressure gas gun is used to investigate the role of confinement wave impedance on the failure kinetics of ceramics during penetration. Tool-steel rods of fixed lengths and L/D ratios of 12, 16 and 24 impact and penetrate unconfined borosilicate cylinders and those under pressure-free polycarbonate, aluminum and steel confinements. The cylinders are all of the same size with projectile–target diameter ratios lying between 12 and 24, and projectile–target length ratio equal to 8. A stress wave controlling confinement is introduced to approximate an elastic waveguide set-up. Penetration depths into the comminuted borosilicate and the corresponding fragment jet diameters are measured between 168 and 1038 m/s impact velocities with high-speed photography and a witness plate. Expectedly, target resistive pressure increases with confinement impedance but decreases with projectile diameter. However, cylinders confined by steel are less resistive to penetration than those confined by aluminum. This anomalous behavior suggests that comminution increases with dynamic compression and it may be related to densification and the failure wave which occur in silica glasses above certain critical pressures. On this basis, comminution threshold conditions are determined and found to depend strongly on the propagation of stress waves across the target–confinement interface. These results are useful for material selection of impact/penetration-resistant structures with ceramic cores. 相似文献
A study on the resistance of rigid projectiles penetrating into semi-infinite concrete targets is performed in this paper. Experimental data are analyzed to examine the penetration resistance during various stages of the penetration process. A numerical tool using AUTODYN hydrocode is applied in the study. The numerical results on both deceleration-time history and depth of penetration of projectiles are in good agreement with experimental data, which demonstrate the feasibility of the numerical model in these conditions. Based on the numerical model with a two-staged pre-drilled hole, the rigid projectile penetration in tunneling stage is studied for concrete targets with different strengths in a wide range of impact velocities. The results show that the penetration in tunnel stage can be divided into two different cases in terms of initial impact velocity. In the first case, when the impact velocity is approximately less than 600 m/s, the deceleration depends on initial impact velocity. In the second case, when the impact velocity is greater than 600 m/s, the effect of target inertia becomes apparent, which agrees with commonly used concrete penetration resistance equations based on cavity expansion model.
Graphic abstract
A two-staged pre-drilled hole model was developed and the results show that the depth of entrance stage tends to decrease with the increase of impact velocity. The influence of the inertial term at low velocity range (approximately close to 600 m/s) is inconspicuous. With further increase of the penetration velocity, the effect of the target inertia becomes apparent as proposed by Forrestal. The effect of mass abrasion of projectiles, entrance phase and strain effect of concrete materials on the tendency of deceleration was clarified.