首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Primary alcohols were selectively tetrahydropyranylated in good to excellent yields at room temperature using PdCl2(CH3CN)2 as catalyst in tetrahydrofuran (THF) in the presence of phenols, secondary, and tertiary alcohols. The tetrahydropyranyl (THP) group could be efficiently removed using PdCl2(CH3CN)2 as catalyst in CH3CN, while other protection groups such as p-toluenesulfonyl (Ts), tert-butyldiphenylsilyl (TBDPS), benzyloxycarbonyl (Cbz), allyl, benzyl (Bn), and benzoyl (Bz) remained intact under these conditions.  相似文献   

2.
Primary, secondary, benzylic and allylic alcohols are efficiently converted to the corresponding diphenylmethyl ethers in the presence of catalytic amounts of PdCl2.  相似文献   

3.
Smog chamber/Fourier transform infrared (FTIR) techniques were used to measure the kinetics of the reaction of n‐CH3(CH2)xCN (x = 0–3) with Cl atoms and OH radicals: k(CH3CN + Cl) = (1.04 ± 0.25) × 10−14, k(CH3CH2CN + Cl) = (9.20 ± 3.95) × 10−13, k(CH3(CH2)2CN + Cl) = (2.03 ± 0.23) × 10−11, k(CH3(CH2)3CN + Cl) = (6.70 ± 0.67) × 10−11, k(CH3CN + OH) = (4.07 ± 1.21) × 10−14, k(CH3CH2CN + OH) = (1.24 ± 0.27) × 10−13, k(CH3(CH2)2CN + OH) = (4.63 ± 0.99) × 10−13, and k(CH3(CH2)3CN + OH) = (1.58 ± 0.38) × 10−12 cm3 molecule−1 s−1 at a total pressure of 700 Torr of air or N2 diluents at 296 ± 2 K. The atmospheric oxidation of alkyl nitriles proceeds through hydrogen abstraction leading to several carbonyl containing primary oxidation products. HC(O)CN, NCC(O)OONO2, ClC(O)OONO2, and HCN were identified as the main oxidation products from CH3CN, whereas CH3CH2CN gives the products HC(O)CN, CH3C(O)CN, NCC(O)OONO2, and HCN. The oxidation of n‐CH3(CH2)xCN (x = 2–3) leads to a range of oxygenated primary products. Based on the measured OH radical rate constants, the atmospheric lifetimes of n‐CH3(CH2)xCN (x = 0–3) were estimated to be 284, 93, 25, and 7 days for x = 0,1, 2, and 3, respectively.  相似文献   

4.
Air‐stable symmetric Schiff base have been synthesized and proved to be efficient ligands for Suzuki–Miyaura reaction between aryl bromides and arylboronic acids using PdCl2(CH3CN)2 as palladium source under aerobic conditions. The coupling reaction proceeded smoothly using N,N‐bis(anthracen‐9‐ylmethylene)benzene‐1,2‐diamine (L7) as ligand to provide 4‐substituted styrene compounds in good yields. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Three palladium(II) complexes and four platinum(II) complexes having general formula CpFe{1,2-C5H3(PPh2)(CH2SR)}MCl2 (M = Pd, R = Ph, Et and tBu; M = Pt, R = Ph, Et, tBu and Cy) have been synthesized by reaction of the corresponding CpFe{1,2-C5H3(PPh2)(CH2SR)} ligands with PdCl2(CH3CN)2 or PtCl2(CH3CN)2. These complexes have been fully characterized in solution and in solid state. In all cases, monomeric square planar complexes were obtained as pure diastereoisomers.  相似文献   

6.
The reaction of allyl palladium(II) chloride dimer and 4,4′‐bis(RfCH2OCH2)‐2,2′‐bpy, 1a–b , in the presence of AgOTf resulted in the synthesis of cationic palladium complex, [Pd(η3‐allyl)(4,4′‐bis‐(RfCH2OCH2)‐2,2′‐bpy)](OTf), 2a–b where Rf = C9F19 ( a ), C10F21 ( b ), respectively. The reaction of [PdCl2(CH3CN)] or K2PdCl4 with 1b , gave rise to the synthesis of [PdCl2(4,4′‐bis‐(C10F21CH2OCH2)‐2,2′‐bpy)], 3b . The quantitatively determined solubility curves of 2a–b and 3b in DMF indicated dramatic increase of solubility for 2a – b and 3b from ?40 to 90 °C. The catalyst‐recoverable Pd‐catalyzed Heck/Sonogashira reactions were successfully achieved in DMF with microwave‐assistance. The cationic Pd‐catalyzed Heck arylation of methyl acrylate was selected to demonstrate the feasibility of recycling 2a–b using DMF as a solvent under microwave‐assisted thermomorphic conditions. At the end of each cycle, the product mixtures were cooled, and then the catalysts were recovered by decantation. The Heck arylation catalyzed by 2b under microwave‐assisted mode exhibited good recycling results favoring the trans product. To our knowledge, this is the first example of cationic Pd‐catalyzed Heck arylation under microwave‐assisted thermomorphic conditions. Additionally, recoverable 3b ‐catalyzed Sonogashira reactions were also achieved successfully in DMF. The reactions under microwave‐assistance gave much better results in yield and in efficiency than that under conventional thermal heating.  相似文献   

7.
Unlike the saturated aliphatic and aromatic alcohols, allyl alcohol under the same conditions reacts with polyfluoroalkyl chlorosulfites to form not ethers, but polyfluorinated alcohols. The exception is polyfluoroalkyl chlorosulfites with the chain length of more than five carbon atoms. Allyl ethers of polyfluorinated alcohols of general formula CH2=CHCH2OCH2(CF2CF2)nH (n = 1–3) were obtained, when the reaction proceeded in the presence of potassium carbonate, owing to its participation in a specific orientation of the reaction centers in the resulting intermediate structure, which is easily transformed into allyl ethers of polyfluorinated alcohols.  相似文献   

8.
 This article gives an overview of recent chemistry based on the tris-acetonitrile complex [RuCp(CH3CN)3]+. Due to the labile nature of the CH3CN ligands, substitution reactions are a dominant feature of this complex. Important derivatives are the highly reactive complexes [RuCp(PR 3)(CH3CN)2]+ which are a source of the 14e fragment [RuCp(PR 3)]+. These species are catalytically active in the redox isomerization of allyl alcohols to give aldehydes and ketones. Furthermore, the cationic complex [RuCp1(P),η2-PPh2CH2CH2CH*CH2)(CH3CN)]PF6 derived from the reaction of [RuCp(CH3CN)3]+ with PPh2CH2CH2CH*CH2 is a model compound for studying coupling reactions of olefins and acetylenes. In addition, [RuCp(CH3CN)3]+ is a valuable precursor for the synthesis of configurationally stable chiral three-legged piano-stool ruthenium complexes. These are currently being intensively investigated as Lewis acid catalysts in asymmetric synthesis.  相似文献   

9.
Silicaphosphite (silphos), [PCl3-n(SiO2)n], as a heterogeneous phosphorous compound, catalyzes the thiocyanation of benzylic alcohols and silyl and THP ethers in the presence of I2 and NH4SCN in refluxing CH3CN. The produced silphos oxide byproduct can be easily separated by a simple filtration. Silphos is also used for the efficient and selective deprotection of silyl and THP-ethers to their corresponding alcohols.  相似文献   

10.
The title imino–phosphine compound, [PdCl2(C26H22NP)]·CH3CN, was prepared by reaction of N‐[2‐(diphenylphosphanyl)benzylidene]‐2‐methylaniline with dichlorido(cycloocta‐1,5‐diene)palladium(II) in dry CH2Cl2. The PdII cation is coordinated by the P and N atoms of the bidentate chelating ligand and by two chloride anions, generating a distorted square‐planar coordination geometry. There is a detectable trans influence for the chloride ligands. The methyl group present in this structure has an influence on the crystal packing.  相似文献   

11.
Aminomethylphosphine (P–C–N) type ligands, (Ph2PCH2)2NR R = –(CH2)3Si(OEt3)3 or –CH2CH2OH, and their Pd(II) complexes have been synthesized. All the compounds were characterized by 1H-, 31P-NMR, and elemental analysis. The complexes are proposed to have a square planar geometry. They were investigated as catalysts for the Heck reaction of aryl halides (I, Br, Cl) with methyl acrylate. Both complexes showed high activity to give methyl cinnamate in good yields, with the best turnover numbers found for [PdCl2(Ph2PCH2)2N(CH2)3Si(OEt)3].  相似文献   

12.
Summary.  This article gives an overview of recent chemistry based on the tris-acetonitrile complex [RuCp(CH3CN)3]+. Due to the labile nature of the CH3CN ligands, substitution reactions are a dominant feature of this complex. Important derivatives are the highly reactive complexes [RuCp(PR 3)(CH3CN)2]+ which are a source of the 14e fragment [RuCp(PR 3)]+. These species are catalytically active in the redox isomerization of allyl alcohols to give aldehydes and ketones. Furthermore, the cationic complex [RuCp1(P),η2-PPh2CH2CH2CH*CH2)(CH3CN)]PF6 derived from the reaction of [RuCp(CH3CN)3]+ with PPh2CH2CH2CH*CH2 is a model compound for studying coupling reactions of olefins and acetylenes. In addition, [RuCp(CH3CN)3]+ is a valuable precursor for the synthesis of configurationally stable chiral three-legged piano-stool ruthenium complexes. These are currently being intensively investigated as Lewis acid catalysts in asymmetric synthesis. Received May 31, 2000. Accepted June 13, 2000  相似文献   

13.
PdCl2(CH3CN)2 catalyzes the hydrolysis of dioxolane acetals and ketals in moist CH3CN, while in acetoze, efficient and more reproducible exchange reactions take place.  相似文献   

14.
Amide-functionalized N-heterocyclic carbene (NHC) precursors such as azolium compounds have been designed and synthesized. Reaction of PdCl2(CH3CN)2 with the NHC-Ag complex derived from the azolium salt gave [(NHC)PdCl2]2 or (NHC)2PdCl2, whereas PdCl2(PPh3)2 reacted with the Ag complex to afford a mixed carbene/phosphine complex such as (NHC)(PPh3)PdCl2 together with a cationic [(NHC)(PPh3)2PdCl]+Cl whose structure was characterized by X-ray crystallographic studies. Thus, the library of NHC-Pd complexes with a tethered amide group has been successfully expanded.  相似文献   

15.
A β‐diketimine ligand with vinylidene substitution at γ‐carbon, CH2C(CH3CNAr)2 (Ar = 2,6‐diisopropylphenyl) ( L 2 ), was synthesized by treating β‐diketimine H2C(CH3CNAr)2 with n ‐BuLi followed by paraformaldehyde. L 2 formed the homobimetallic ether‐bridged β‐diketiminate complex [O{(CH2‐β‐diketiminate)Pd(OAc)}2] ( 1 ) with (PdOAc)2. It also gave complexes [L2PdCl2] ( 2 ) and [L2NiBr2] ( 3 ) when treated with PdCl2(CH3CN)2 and NiBr2(dimethoxyethane), respectively. All the compounds were characterized using 1H/13C NMR spectroscopy and single‐crystal X‐ray diffraction studies. The catalytic activity of Pd and Ni complexes 1 , 2 and 3 was explored in Heck coupling and alkyne trimerization reactions and it was found that they are very good catalysts. The results are reported in detail.  相似文献   

16.
The catecholase activity of the dicopper(II) complexes [Cu2(L1)(μ‐OCH3)(NCCH3)2](PF6)2·H2O·CH3CN ( 1 ), [Cu2(L2)(μ‐OH)(MeOH)(NCCH3)](BF4)2 ( 2 ), [Cu2(L3)(μ‐OMe)(NCCH3)2](BF4)2·2CH3CN·H2O ( 3 ), [Cu2(L2)(μ‐OAc)2]BF4·H2O ( 4 ), [Cu2(L4)(μ‐OAc)2]ClO4 ( 5 ) and [Cu2(L5)(μ‐OMe)(NCCH3)3(OH2)](ClO4)2·2CH3OH·CH3CN ( 6 ) consisting of varying para‐substituted phenol ligands HL1 = 4‐trifluoromethyl‐2,6‐bis((4‐methylpiperazin‐1‐yl)methyl)phenol, HL2 = 4‐bromo‐2,6‐bis((4‐methyl‐1,4‐diazepan‐1‐yl)methyl)phenol, HL3 = 4‐bromo‐2‐((4‐methyl‐1,4‐diazepan‐1‐yl)methyl)‐6‐((4‐methylpiperazin‐1‐yl)methyl)phenol, HL4 = 2,6‐bis((4‐methylpiperazin‐1‐yl)methyl)‐4‐nitrophenol and HL5 = 4‐tert‐butyl‐2,6‐bis((4‐methylpiperazin‐1‐yl)methyl)phenol was studied. The main difference within the six complexes lies in the individual copper–copper separation that is enforced by the chelating side arms of the phenolate ligand entity and more importantly in the exogenous bridging solvent, hydroxide, methanolate or acetate ions. The distance between the copper cores varies from 2.94Å in 1 to 3.29Å in 5 . The catalytic activity of the complexes 1 – 6 towards the oxidation of 3,5‐di‐tert‐butylcatechol was determined spectrophotometrically by monitoring the increase of the 3,5–di‐tert‐butylquinone characteristic absorption band at about 400 nm over time saturated with O2. The complexes are able to oxidize the substrate 3,5‐di‐tert‐butylcatechol to the corresponding o‐quinone with distinct catalytic activity (kcat between 92 h?1 and 189 h?1), with an order of decreasing activity 6 > 5 > 1 , 2 , 4 ≥ 3 . A kinetic treatment of the data based on the Michaelis‐Menten approach was applied. A correlation of the catecholase activities with the variation of the para‐ substituents as well as other effects resulting from the copper core distances is discussed. [Cu2(L5)(μ‐OMe)(NCCH3)3(OH)2](ClO4)2·2CH3OH·CH3CN ( 6 ) exhibited the highest activity of the six complexes as a result of its high turnover rate.  相似文献   

17.
An efficient and highly chemoselective desilylating method is described. Trimethylsilyl ethers (0.25 M) in a CH3OH/CCl4 (1:1) solvent mixture are deprotected to their corresponding alcohols with ultrasound in a commercial ultrasonic cleaning bath. Selective deprotection of tert-butyldimethylsilyl ethers of benzyl alcohols and phenols is achieved under ultrasonic conditions. We deprotected also tert-butyldimethylsilyl ethers of primary alcohols, whereas tert-butyldimethylsilyl ethers of secondary and tertiary alcohols are stable under these conditions.  相似文献   

18.
The crystal structure of 18-crown-6 · 2(CH3CN) has been determined via data collection at –150°C. The structure consists of two crown molecules each hydrogen bonded to two acetonitrile moieties in the asymmetric unit, each residing around a center of inversion. The crown ethers display their fullD 3d symmetry; methyl ... O contacts range from 3.189(8) to 3.598(8) Å. There are no close contacts indicative of any interaction between the crown/2(CH3CN) units. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82056 (14 pages).For Part 3, see reference [1]  相似文献   

19.
The reactions of palladium(II) chloride, PPh3 and heterocyclic-N/NS ligand in a mixture of CH3CN (5 ml) and CH3OH (5 ml) produced [PdCl2(PPh3)(L1)]·(CH3CN) (1) (L1 = ADMT = 3-amino-5,6-dimethyl-1,2,4-triazine), [PdCl2(PPh3)(L2)] (2) (L2 = 3-CNpy = 3-cyanopyridine), [PdCl(PPh3)(L3)]2·(CH3CN) (3), [PdCl(PPh3)2(HL3)]Cl (4) (HL3 = Hmbt = 2-mercaptobenzothiazole). The coordination geometry around the Pd atoms in these complexes is a distorted square plane. In 3, L3 acts as a bidentate ligand, bridging two metal centers, while in 4, HL3 appears as monodentate ligand with one nitrogen donor atom uncoordinated. Complexes 1-4 are characterized by IR, luminescence, NMR and single crystal X-ray diffraction analysis. All complexes exhibit luminescence in solid state at room temperature.  相似文献   

20.
A novel catalytic system of PdCl2(CH3CN)2 with N,N′-dicyclohexyl-1,4-diazabutadiene (DAB-Cy) ligand was successfully used in reductive coupling of aryl halides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号