首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two simple equations have been developed using the lattice theory and the regular solution assumption to predict the solid-vapor and solid-liquid interfacial tension. The required parameters are the liquid critical temperature and volume, the solid melting temperature and the molar volume of liquid and solid compounds. To confirm the models, the predicted solid-fluid interfacial tension values have been used to predict the contact angle of the liquid drop on the solid surface applying Young's equation. Agreement of the predicted contact angle with the experimental data reveals the reliability of the developed models.  相似文献   

2.
The present modelling study has been dedicated to determining the interfacial properties of binary and ternary liquid mixtures made up of tetrahydrofuran, 2-propanol and 2,2,4-trimethylpentane. The variation of the temperature is from 288 to 308 K. By using both UNIFAC activity model and the fugacity model based on the cubic plus association (CPA) equation of state (EOS), a model based on the equality of chemical potentials in the liquid and the surface layer is utilised to describe the liquid–vapour interface of these liquid mixtures. The surface tension, composition and density are simultaneously predicted. The results of this model show that experimental surface tension data are in a good agreement with the predicted ones. The model using CPA EOS and molar volume has a better performance than the one uses the UNIFAC activity model.  相似文献   

3.
The early stages of liquid crystal phase ordering upon thermal quenches of isotropic phases into unstable and metastable temperature ranges is studied using two-dimensional (2D) computational solutions of the governing Landau-de Gennes (L-dG) equations for low molar mass nematic liquid crystals and analysis based on the corresponding interfacial nematodynamic model. The early phase ordering stage, for both unstable and metastable quenches of the isotropic phase, is shown to lead to highly textured nematic spherulites through a mechanism of interfacial defect nucleation. The underlying mechanisms of interface-driven texturing are elucidated using complementary 2D computational parametric studies of the bulk L-dG equation and analysis of the IN model. It is shown that for highly curved nanodomains and realistic elastic anisotropy, sharp interfacial transitions between uniaxial and biaxial states arise and are resolved by interfacial defect nucleation, which upon subsequent migration into the spherulite's interior leads to strong texturing. This paper shows that texture formation in the early stages of phase ordering is interface driven, and due to low interface tension, elastic anisotropy, and large curvature. Interfacial defect shedding in highly curved, low tension, anisotropic interfaces is a significant defect nucleation mechanism that needs to be taken into account when considering texturing processes.  相似文献   

4.
在288.15-318.15 K温度范围内测定了不同浓度离子液体1-乙基-3-甲基咪唑醋酸盐([C2mim][OAc])水溶液的表面张力和密度;在改进李以圭等人的溶液表面张力模型基础上,提出摩尔表面Gibbs自由能新概念,建立了摩尔表面Gibbs自由能随溶液浓度变化的线性经验方程,利用这个经验方程估算了[C2mim][OAc]水溶液的摩尔表面Gibbs自由能,并进一步预测了该溶液的表面张力,其预测值与相应的表面张力实验值高度相关并非常相似。由此可见,摩尔表面Gibbs自由能与等张比容极其类似,可能成为预测离子液体及其溶液性质的一种新的半经验方法。在指定溶液浓度下,根据溶液的摩尔表面Gibbs自由能随温度呈线性变化的规律,得到了新的Eötvös方程,与传统的Eötvös方程相比,新Eötvös方程的每一个参数都有明确的物理意义:斜率的负值是摩尔表面熵,截距是摩尔表面焓,在指定浓度的溶液中摩尔表面焓几乎不随温度变化。  相似文献   

5.
In the Young equation, only two of the four unknowns are measurable. They are the liquid interfacial tension sigma lv and the contact angle theta. To solve this equation, another correlation is required. In solving this equation, a better understanding of the magnitude of the solid interfacial tension sigma sv and the solid-liquid interfacial tension sigma sl is expected. The possibility of a theoretical estimation of the contact angle theta is sought as an alternative to the experimental method. In this paper, an attempt to calculate the solid interfacial tension sigma sv is reported. It is based on the intermolecular interaction which is mathematically described in the parameter Phi sl according to Good. The calculated sigma sv values for PTFE, steel, and glass surrounded by dense carbon dioxide are verified by comparing those values obtained from aqueous and ethanolic systems. Furthermore, the solid interfacial tension sigma sv is also used to forecast the water drop contact angle theta. The calculated values are compared with the experimental measured ones.  相似文献   

6.
Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) nanospheres and oily nanocapsules were prepared by emulsification–diffusion technique. Controlled particle sizes were obtained employing binary mixtures of solvents (chloroform:ethanol) in the organic phase. Ethanol was chosen because of its dipole–dipole interaction with chloroform and its hydrogen bond with water. The smallest particles (from 253 to 493 nm) were obtained using a mixture of solvents composed of 70% ethanol and 30% chloroform (v/v) in the organic phase, while the largest particles (from 896 to 1568 nm) were obtained using chloroform exclusively. Independently of the organic phase composition, the nanoparticles showed unimodal distributions. Optical microscopy showed that the size of the primary emulsion droplets of the nanosphere formulations decreased with increasing ethanol concentrations in the organic phase. A simple empirical equation was developed correlating the nanoparticle diameters with the surface tension gradient coefficient multiplied by the ethanol molar concentration in the organic phase. The strategy showed that the control of the nanoparticle diameters, using emulsification–diffusion technique, could be achieved by adjusting the surface tension of the organic phase.  相似文献   

7.
Design and development of a dynamic interfacial pressure detector (DIPD) is reported. The DIPD measures the differential pressure as a function of time across the liquid-liquid interface of organic liquid drops (i.e., n-hexane) that repeatedly grow in water at the end of a capillary tip. Using a calibration technique based on the Young-Laplace equation, the differential pressure signal is converted, in real-time, to a relative interfacial pressure. This allows the DIPD to monitor the interfacial tension of surface active species at liquid-liquid interfaces in flow-based analytical techniques, such as flow injection analysis (FIA), sequential injection analysis (SIA) and high performance liquid chromatography (HPLC). The DIPD is similar in principle to the dynamic surface tension detector (DSTD), which monitors the surface tension at the air-liquid interface. In this report, the interfacial pressure at the hexane-water interface was monitored as analytes in the hexane phase diffused to and arranged at the hexane-water interface. The DIPD was combined with FIA to analytically measure the interfacial properties of cholesterol and Brij®30 at the hexane-water interface. Results show that both cholesterol and Brij®30 exhibit a dynamic interfacial pressure signal during hexane drop growth. A calibration curve demonstrates that the relative interfacial pressure of cholesterol in hexane increases as the cholesterol concentration increases from 100 to 10,000 μg ml−1. An example of the utility of the DIPD as a selective detector for a chromatographic separation of interface-active species is also presented in the analysis of cholesterol in egg yolk by normal-phase HPLC-DIPD.  相似文献   

8.
In the Gibbs adsorption equation, the application of solvent activity for the calculation of the surface/interfacial excess is proposed for nonideal or associating or pseudocomponents such as asphaltenes. For the aforementioned systems, only the mass-based phenomenological interfacial excess can be determined based on interfacial tension versus activity data. The use of the mole fraction is compared to the use of the activity when the adsorbed amount of associating asphaltenes is calculated at a water/toluene interface. Langmuir-type isotherms describe the adsorption of asphaltenes at toluene/water interfaces. Asphaltenes were treated to remove the resins and natural surfactants using cyclic precipitation and dissolution of asphaltenes at a fixed aliphatic/aromatic ratio. Different fractions of asphaltenes were obtained by changing the aliphatic/aromatic ratio of the precipitating solvent. The limiting molar masses of asphaltenes measured by vapor pressure osmometry are different for fractions precipitated at different heptane to toluene ratios. The mass-based adsorbed amounts at the water/toluene interface, at a 0.1 asphaltene-to-toluene mass-ratio, varied in the range of 0.8-2.8 mg/m(2), depending on the molar mass of asphaltenes.  相似文献   

9.
Equilibrium interfacial tension at the liquid/liquid interfaces for two chelating metal ion extractants, 2-hydroxy-5-nonylacetophenone oxime (HNAF) and 1-phenyldecane-1,3-dion (beta-diketone), two solvating extractants, trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), and a modifier, decanol, were obtained with a drop volume tensiometer. Moreover, four equimolar binary mixtures of extractant/extractant and extractant/modifier type were considered. The composition of the mixed adsorbed monolayer and the molecular interaction parameters beta were determined by the Rosen equation. It was found that in all the studied systems coadsorption exists; however, synergism in the reduction of interfacial tension was not observed. The obtained results indicate that in the case of three mixtures considered the composition of a mixed monolayer at the hydrocarbon/water interface was quite different from that in the bulk organic phase. Only for the TOPO/beta-diketone mixture were the compositions at the interface and in the bulk organic phase similar. The obtained results indicate that it is impossible to predict the composition of a mixed monolayer by taking into account the interfacial activity of individual components of the mixture. In some cases the compound shows lower interfacial activity (smaller efficiency and effectiveness of adsorption) and occupies a dominant position at the interface, regardless of the type of hydrocarbon used as the organic diluent.  相似文献   

10.
The first fundamental step in determining the physicochemical properties of an equilibrium system is to determine the activity coefficient of electrolyte and non-electrolyte ions. Based on understanding the importance of activity coefficient in thermodynamic systems in this study, in order to predict interfacial tension between oil and aqueous phases composed of ionic liquids and brine, a modified thermodynamic equation based on concentration and coefficient of activity of ionic liquids is defined. For this study, the Extended UNIQUAC model is desired and its adjustable parameters are optimized with Genetic + PSO algorithm. The modified model has practical features such as investigating the effect of concentrations of salts in the water of oil fields formation on the interfacial tension of the system, investigating the effect of concentrations of various organic compounds such as ionic liquids on the interfacial tension of the system and investigating the interaction energy between organic and inorganic ions. In this study, the optimization of the modified thermodynamic equation to predict the interfacial tension of solutions containing [C8Py][Cl], [C18Py][Cl], [C12mim][Cl] and [C18mim][Cl] with the presence of brine and distilled water is investigated. Also, the effect of ionic strength of the solution in 32 equilibrium systems on interfacial tension is investigated. According to the optimization results of this study, the design of a computer program can be considered to predict the interfacial tension with the presence of ionic liquids and salts.  相似文献   

11.
The healing of scratches on the surface of vitreous selenium was observed over a period of nine weeks, and from the data the solid surface tension of vitreous Se is estimated to be (100 ± 20) dyne/cm at 38.8°C, about the same as that of the liquid at the melting point. This value is three times as large as the critical surface tension determined from contact angle measurements, which indicates that for vitreous Se in contact with organic liquids, the solid—liquid interfacial tension is about two-thirds as much as the solid surface tension. The present method of measurement can probably be used to determine the solid surface tension of other polymers, and by measuring the healing of scratches on a solid immersed in a liquid the method could be used to determine the solid—liquid interfacial tension.  相似文献   

12.
A diffusion model is proposed to describe the adsorption kinetics of proteins at a liquid interface. The model is based on the simultaneous solution of the Ward-Tordai equation and a set of recently developed equations describing the equilibrium state of the adsorption layer: the adsorption isotherm, the surface layer equation of state, and the function of adsorption distribution over the states with different molar areas. The new kinetics model is compared with dynamic surface tensions of beta-casein solutions measured with the drop/bubble profile and maximum bubble pressure methods. The adsorption process for low concentrations is governed by the diffusion mechanism, while at large protein concentrations this is only the case in the initial stage. The effective diffusion coefficients agree fairly well with literature data. The adsorption values calculated from the dynamic surface tension data agree very well with the used equilibrium adsorption model.  相似文献   

13.
Abstract

The equation proposed for near-boiling non-associated liquids describes a new functional dependence of their surface tension on such physico-chemical characteristics as: critical volume, critical temperature and molar volume at the temperatures which are near their normal boiling points. It is shown that, in the case of some low-boiling liquids, possessing small molecules, this equation can be used for the adequate calculation of surface tension at different temperatures in the liquid phase.  相似文献   

14.
A linear solvation energy relationship model was used to characterize the retention behavior of a stationary phase based upon a nematic side-on liquid crystalline polymer (SOLCP) in reversed-phase liquid chromatography. The set of solutes was constituted of a high variety of compounds whose molecular sizes were considerably smaller than the mesogenic unit size. The results showed good statistical fits for these retention data in 65:35, 75:25 and 85:15 (v/v) methanol-water mobile phases. Both the cavity term and excess molar refraction are the most important favorable retention-governing parameters, whereas the solute hydrogen bond acceptor basicity is the most unfavorable retention parameter. Hydrophobicity and pi-pi interactions decrease strongly when the percentage of methanol increases, leading to an important retention decrease despite the fact that the hydrogen bond interaction weakens as the organic solvent is added. The shape recognition ability of this side-on liquid crystalline stationary phase on polycyclic aromatic hydrocarbon solutes is partly explained by the solutes' high polarizability due to the presence of pi-electrons. However, the solute polarizability is not sufficient and a stationary phase's "structure effect" must to be taken into account for the shape discrimination observed. The strong interaction between liquid crystal molecules caused likely a adsorption retention mechanism rather than a partition mechanism.  相似文献   

15.
We present results of molecular dynamics simulations of the interface between water and 2-nitrophenyl octyl ether (NPOE). This system is analyzed in detail using a procedure to calculate intrinsic profiles of several important properties (density, radial distribution functions, hydrogen bonds, molecular orientation, self-diffusion). The interface was found to be molecularly sharp but corrugated by thermal fluctuations. Using a method based on capillary wave theory, we have estimated the interfacial tension and obtained good agreement with values calculated from the virial route. The results were compared to simulations of the water/nitrobenzene interface. The presence of an alkyl chain in NPOE introduces an added degree of hydrophobicity, which causes an increase in the interfacial tension. Furthermore, interfacial NPOE molecules are less organized than nitrobenzene and show a distinct dynamic response. These results shed light on the observed differences between these two organic liquids in electrochemical studies.  相似文献   

16.
In this paper, a homogeneous, green analogs ionic liquid containing choline chloride and nickel chloride hexahydrate is formed. The structure of the analogs ionic liquid is preliminary investigated by Fourier transform infrared spectroscopy. It is shown that the nickel chloride hexahydrate bond via hydrogen bonds with choline chloride and urea. The physico-chemical properties of the analogs ionic liquid such as viscosity, conductivity, density, and thermal stability are measured as a function of temperature and composition. The thermal expansion coefficients (r), the molar Gibbs energy of activation (ΔG*) for viscous flow, the molar enthalpy of activation (ΔH*), and the molar entropy of activation (ΔS*) for viscous flow have been calculated. A straight-line equation is used to fit the density data while the Arrhenius equation is used to fit both viscosity and conductivity. Thermal stability of analogs ionic liquid was carried out from room temperature to 973.15 K. It indicates that analogs ionic liquid is stable from room temperature to 488.2 K.  相似文献   

17.
This publication presents a detailed experimental and theoretical study of mass transfer of triethylamine (TEA) across the n-decane/water interface. In preliminary investigations, the partition of TEA between n-decane and water is determined. Based on the experimental finding that the dissociation of TEA takes place in the aqueous and in the organic phase, we assume that the interfacial mass transfer is mainly affected by adsorption and desorption of ionized TEA molecules at the liquid/liquid interface. Due to the amphiphilic structure of the dissociated TEA molecules, a dynamic interfacial tension measurement technique can be used to experimentally determine the interfacial mass transport. A model-based approach, which accounts for diffusive mass transport in the finite liquid bulk phases and for adsorption and desorption of ionized TEA molecules at the interface, is employed to analyze the experimental data. In the equilibrium state, the interfacial tension of dissociated TEA at the n-decane/water interface can be adequately described by the Langmuir isotherm. The comparison between the theoretical and the experimental dynamic interfacial tension data reveals that an additional activation energy barrier for adsorption and desorption at the interface has to be regarded to accurately describe the mass transport of TEA from the n-decane phase into the aqueous phase. Corresponding adsorption rate constants can be obtained by fitting the theoretical predictions to the experimental data. Interfacial tension measurements of mass transfer from the aqueous into the organic phase are characterized by interfacial instabilities caused by Marangoni convection, which result in an enhancement of the transfer rate across the interface.  相似文献   

18.
Surface partitioning of 2,2,6,6-tetramethyl-1-piperidynyloxy radical (Tempo) to the air/water interface follows a Langmuir isotherm. The partition constant was obtained by the surface tension measurements in the concentration range of 1.0 x 10(-4)-2.4 x 10(-3) M yielding K = 640 +/- 99 M(-1). The lateral mobility of Tempo at the air/water interface was measured electrochemically in the surface concentration range of 2.0 x 10(-11)-1.4 x 10(-10) mol/cm2, corresponding to ca. 7.3-50% full monolayer coverage. The measurements employed cyclic voltammetry with line microelectrodes touching the air/water interface. The Tempo lateral diffusion constant of (1.5 +/- 0.7) x 10(-4) cm2/s is independent of surface concentration below 4.0 x 10(-11) mol/cm2. The extent of Tempo water interactions was assessed by the electronic structure calculations. These calculations showed that, at most, two water molecules can hydrogen bond with the oxygen atom of the nitroxyl group of Tempo, and that a single water molecule forms a hydrogen bond that is ca. 30% stronger than the H2O-H2O hydrogen bond. These calculations led to a postulate that Tempo diffuses along the interface largely unimmersed, and that it is coupled to the interfacial water via hydrogen bonding with H2O. In view of this postulate, the viscosity of the aqueous liquid/vapor interfacial region obtained by interpreting the Tempo diffusion constant in the low concentration region is as much as 4 times smaller than that of bulk liquid water.  相似文献   

19.
《Colloids and Surfaces》1993,69(4):203-208
Contact angle kinetics of sessile drops of albumin solution on hydrophilic acetal and hydrophobic FC 721 surfaces were measured using axisymmetric drop shape analysis. Young's equation is used to calculate the solid/liquid interfacial tension from measured contact angles and surface tensions as a function of time. The change in solid/liquid interfacial tension is a result of protein adsorption. It indicates that at the hydrophilic acetal surface the albumin molecules, interact only weakly, whereas the interaction with the hydrophobic FC 721 surface is quite strong.  相似文献   

20.
正负离子混合表面活性剂双水相界面张力的研究   总被引:3,自引:0,他引:3  
阮科  张翎  汤皎宁  肖进新 《物理化学学报》2006,22(12):1451-1455
用旋转滴法测定了正负离子混合表面活性剂形成的双水相界面张力, 研究了双水相界面张力与表面活性剂的分子结构、正负离子表面活性剂的摩尔比、总浓度、外加无机盐及温度的关系. 结果表明, 双水相界面张力在一定正、负离子表面活性剂的摩尔比时属于超低界面张力范围. 观察到三种界面张力曲线类型, 第一类为摩尔比1:1 的两边的两条曲线, 界面张力随过剩表面活性剂组分的比例增加而降低; 第二类为一条跨过摩尔比1:1的马鞍型曲线; 第三类为位于摩尔比1:1的一边的一条马鞍型曲线. 界面张力曲线的类型主要取决于表面活性剂的分子结构, 包括亲水基类型、疏水链长度及对称性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号