共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the bulk thermodynamics and interfacial properties of electrolyte solution mixtures by accounting for electrostatic interaction, ion solvation, and inhomogeneity in the dielectric medium in the mean-field framework. Difference in the solvation energy between the cations and anions is shown to give rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The ion solvation affects the phase equilibrium of the solvent mixture, depending on the dielectric constants of the solvents, reflecting the competition between the solvation energy and translation entropy of the ions. Miscibility is decreased if both solvents have low dielectric constants and is enhanced if both solvents have high dielectric constant. At the mean-field level, the ion distribution near the interface is determined by two competing effects: accumulation in the electrostatic double layer and depletion in a diffuse interface. The interfacial tension shows a nonmonotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations and decreases approximately as the square root of the salt concentration for dilute solutions, reaching a minimum near 1 mM. We also find that, for a fixed cation type, the interfacial tension decreases as the size of anion increases. These results offer qualitative explanations within one unified framework for the long-known concentration and ion size effects on the interfacial tension of electrolyte solutions. 相似文献
2.
Jung Hag Park Young Kyu Lee Jin Soon Cha Seog K. Kim Yong Rok Lee Chong-Soon Lee Peter W. Carr 《Microchemical Journal》2005,80(2):183-188
In a number of previous communications, we reported on the utility of the solvatochromic linear solvation energy relationship (LSER) method for the correlation of a number of solute and solvent-dependent properties. In those studies, it was our practice to examine the effect of a variety of solvents on a given solute or a number of solutes in a given solvent. Here we report on a novel generalized LSER in which the solute and solvent were both simultaneously varied so as to assess the validity of the entire LSER concept and define its limits. The Hildebrand solubility parameter, δH, the Kamlet–Taft solvatochromic parameters, π*, α, β and the solute molar volume, V2, were used as the explanatory variables. The gas–liquid partition coefficient (K) was the property of interest. We have found that the correlation using the generalized linear solvation energy relationship is statistically as good as the previous LSER correlations despite the use of a far smaller number of freely adjustable parameters. Furthermore, the new approach is able to give reasonable predictions of K values of systems not included in the data set upon which the regression is based. 相似文献
3.
Solvolysis/dehydrohalogenation rates of 2-chloro-2-methyladamantane (CMA) in 15 hydrogen-bond acidic and/or basic solvents are studied. The rates of reaction in these solvents have been correlated with the solvation equation developed by Kamlet, Abraham, and Taft. The linear solvation energy relationship (LSER) derived from this study is given by the following equation: log k = -5.409 + 2.219 + 2.505alpha(1) - 1.823beta(1) where , alpha(1), and beta(1) are the solvation parameters that measure the solvent dipolarity/polarizability, hydrogen-bond acidity (electrophilicity), and hydrogen-bond basicity (nucleophilicity). A high correlation coefficient (r = 0.996, SD = 0.191) was achieved. The cavity term, which includes the Hildebrand parameter for solvent cohesive energy density, delta(H), was not found to be statistically significant for this reaction substrate. The resulting equation allows calculated rates of reaction in other solvents and provides insight into the reaction pathway. In a previously reported correlation for another tertiary chloride, tert-butyl chloride (TBC), the coefficients for alpha(1) and are significantly larger and the coefficient for is statistically significant. In addition, the coefficient for beta(1) in the TBC correlation is positive, rather than negative, indicating that the transition states for TBC and CMA are significantly different. These results demonstrate why the uses of simple solvolytic correlation methods may be invalid even for comparisons of similar type substrates, e.g., tertiary chlorides. Also, these results provide confidence in the use of multiple linear regression analysis for predicting solvolytic rates in additional solvents. 相似文献
4.
A method is described for the determination of the interfacial tension between two liquids. It is based on the evaluation of the oscillations performed 相似文献
5.
《Fluid Phase Equilibria》2005,227(2):225-238
Vapor–liquid interfacial tensions of miscible mixtures have been predicted by applying the gradient theory to an improved Peng–Robinson equation of state. The modified Huron–Vidal mixing rule model has been considered for fitting vapor–liquid equilibrium data of miscible polar and non-polar mixtures and, then, for predicting the interfacial tension of these mixtures. According to results, an accurate and globally stable fitting of the vapor–liquid equilibrium data results on a physically coherent prediction of interfacial tensions in the full concentration range. In addition, we present a criteria based on the geometry of the grand potential function along the interface for assessing the predictive value of the GT. Calculations for subcritical binary mixtures are presented and compared to experimental data and the Parachor method for demonstrating the potential of the unified approach suggested in this work. 相似文献
6.
This paper describes the results of the evaluation of retention dependence on the physicochemical properties of solutes in linear gradient elution by reversed-phase liquid chromatography (RPLC) based on linear solvation energy relationships (LSERs). Retention time data on Inertsil ODS(3) column by linear gradient elution were collected for both acetonitrile-water and methanol-water binary mobile phases under various gradient steepness. Based on the LSERs, the retention times were linearly correlated with the physicochemical properties (size, dipolarity, and hydrogen bond donor-acceptor acidity and basicity) of solutes. As predicted by LSERs, very acceptable linear relationships are observed for both mobile phases. While the magnitudes of the coefficients are modified by the gradient steepness, their signs are consistent with those obtained by isocratic elution. As obtained for isocratic elution, the dominant factors to retention in linear gradient elution of RPLC are the solutes' size and hydrogen bond acceptor basicity. The conclusions of the study allow us to predict retention in chromatographic method development by gradient elution. 相似文献
7.
8.
The prediction of salt-mediated electrostatic effects with high accuracy is highly desirable since many biological processes where biomolecules such as peptides and proteins are key players can be modulated by adjusting the salt concentration of the cellular milieu. With this goal in mind, we present a novel implicit-solvent based linear Poisson-Boltzmann (PB) solver that provides very accurate nonspecific salt-dependent electrostatic properties of biomolecular systems. To solve the linear PB equation by the Monte Carlo method, we use information from the simulation of random walks in the physical space. Due to inherent properties of the statistical simulation method, we are able to account for subtle geometric features in the biomolecular model, treat continuity and outer boundary conditions and interior point charges exactly, and compute electrostatic properties at different salt concentrations in a single PB calculation. These features of the Monte Carlo-based linear PB formulation make it possible to predict the salt-dependent electrostatic properties of biomolecules with very high accuracy. To illustrate the efficiency of our approach, we compute the salt-dependent electrostatic solvation free energies of arginine-rich RNA-binding peptides and compare these Monte Carlo-based PB predictions with computational results obtained using the more mature deterministic numerical methods. 相似文献
9.
Clifford R. Mitchell Nancy J. Benz Shuhong Zhang 《Journal of separation science》2010,33(19):3060-3067
Supercritical fluid chromatography was utilized in combination with the Abraham model of linear solvation energy relationship to characterize 11 different HPLC stationary phases. System constants were determined at one supercritical fluid chromatography condition for each stationary phase. The results indicate that several types of silica columns, including type B silica, type C silica, and fused core silica, are very similar in their retention behavior. Several aromatic stationary phases were characterized and it was found that, in contrast to the other phases studied, all of the aromatic stationary phases had positive contributions from the dispersion/cavity (v) term of the linear solvation energy relationship. Several aliphatic phases were characterized and there were several linear solvation energy relationship constants that differentiated the phases from each other, mainly the polar terms (dipolarity and hydrogen bonding). One stationary phase, a fused core pentafluorophenyl (PFP) phase, had very poor regression quality. The column volume of this phase was lower than the others in the study, which may have had some impact on the results of the regression. 相似文献
10.
11.
12.
13.
The linear solvation energy relationship (LSER) model was used to characterize interactions responsible for sorption of volatile organic compounds (VOCs) in air samples on six different solid-phase microextraction (SPME) fibers at 296K and zero relative humidity. The polydimethylsiloxane and polyacrylate fibers sorption data were also modeled at different relative humidities in the range of 10-90% and influence of water vapors on the extraction process is discussed. The LSER equations were obtained by a multiple regression of the distribution coefficients of 14 probe solutes on an appropriate SPME fiber against the solvation parameters of the solutes. The derived LSER equations successfully predicted the VOC distribution coefficients and the selectivity of individual SPME fibers for the various volatile solutes. The LSER approach coupled with SPME is a relatively simple and reliable tool to rapidly characterize the sorption mechanism of VOCs with various stationary phases and may potentially be applied to design and test new chromatographic materials for sampling or separation of VOCs. 相似文献
14.
15.
The interfacial property in polymer-liquid crystal systems is quite different from flexible polymer-polymer mixtures due to the anisotropic properties of liquid crystals. The apparent interfacial tension between a liquid crystal and a flexible polymer was measured by deformed droplet retraction method. The deformation and recovery of a single liquid crystal droplet dispersed in a poly(dimethylsiloxane) matrix were realized by a transient shear flow and observed by polarized optical microscope. The apparent interfacial tension of polymer-liquid crystal system was found to be greatly dependent on the temperature, initial droplet deformation and liquid crystal droplet size. 相似文献
16.
Characterization of retention and selectivity differences between surfactants in micellar electrokinetic chromatography (MEKC) using linear solvation energy relationships (LSERs) has been given a significant amount of attention in the last four years. This report evaluates the validity of using the two LSER models that have been used to fit retention in MEKC in the literature. The results and the fit of the revised model and parameters developed by Abraham and coworkers are compared to the original model developed by Kamlet, Taft, and coworkers. LSERs can generally only be used as a comparative tool to describe the selectivity differences between surfactant systems used in MEKC. With this in mind, it was determined that the results of both models essentially provide the same information about these differences. However, the revised model and parameters have been found to yield a statistically better fit of the MEKC retention data as well as providing more chemically sound LSER coefficients. 相似文献
17.
In a planar oriented sample of a calamitic nematic lyotropic system (mixture of sodium lauryl sulphate/water/decanol), isotropic pretransitional domains appear at the nematic to isotropic transition. The domains are oblong in shape with the long axis along the orientational direction. We show experimental evidence that this oblong shape is determined by the nematic-isotropic interfacial tension anisotropy. Two uniparametric models of simple angular dependences for the interfacial tension are tested. Using the differential system obtained from the Young-Laplace condition at the nematic-isotropic interface, the domain shape can be numerically calculated for each value of the interfacial tension anisotropy. By processing the values of the transmitted light through both an isolated isotropic domain and its surrounding nematic zone, we obtain the anisotropy of the interfacial tension as the main fitting parameter. An estimation of the ratio of the extreme values for the interfacial tension is given. 相似文献
18.
Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension 总被引:1,自引:0,他引:1
Control of fluid dynamics at the micrometer scale is essential to emulsion science and materials design, which is ubiquitous in everyday life and is frequently encountered in industrial applications. Most studies on multiphase flow focus on oil-water systems with substantial interfacial tension. Advances in microfluidics have enabled the study of multiphase flow with more complex dynamics. Here, we show that the evolution of the interface in a jet surrounded by a co-flowing continuous phase with an ultra-low interfacial tension presents new opportunities to the control of flow morphologies. The introduction of a harmonic perturbation to the dispersed phase leads to the formation of interfaces with unique shapes. The periodic structures can be tuned by controlling the fluid flow rates and the input perturbation; this demonstrates the importance of the inertial effects in flow control at ultra-low interfacial tension. Our work provides new insights into microfluidic flows at ultra-low interfacial tension and their potential applications. 相似文献
19.
This report details an approach to improve the accuracy of free energy difference estimates using thermodynamic integration data (slope of the free energy with respect to the switching variable λ) and its application to calculating solvation free energy. The central idea is to utilize polynomial fitting schemes to approximate the thermodynamic integration data to improve the accuracy of the free energy difference estimates. Previously, we introduced the use of polynomial regression technique to fit thermodynamic integration data (Shyu and Ytreberg, J Comput Chem, 2009, 30, 2297). In this report we introduce polynomial and spline interpolation techniques. Two systems with analytically solvable relative free energies are used to test the accuracy of the interpolation approach. We also use both interpolation and regression methods to determine a small molecule solvation free energy. Our simulations show that, using such polynomial techniques and nonequidistant λ values, the solvation free energy can be estimated with high accuracy without using soft‐core scaling and separate simulations for Lennard‐Jones and partial charges. The results from our study suggest that these polynomial techniques, especially with use of nonequidistant λ values, improve the accuracy for ΔF estimates without demanding additional simulations. We also provide general guidelines for use of polynomial fitting to estimate free energy. To allow researchers to immediately utilize these methods, free software and documentation is provided via http://www.phys.uidaho.edu/ytreberg/software . © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010 相似文献
20.
Sergei F. Vyboishchikov 《Journal of computational chemistry》2023,44(3):307-318
ESE-EE (Easy Solvation Estimation with Electronegativity equalization) is a quick method for estimation of solvation-free energies ΔGºsolv, which uses a thoroughly fitted electronegativity equalization (EE) scheme to obtain atomic charges, which are further employed in a scaled noniterative COSMO-like calculation to evaluate the electrostatic component of ΔGºsolv. Nonelectrostatic corrections including adjustable parameters are also added. For neutral solutes, ESE-EE yields a mean absolute error (MAE) in ΔGsolv° of 1.5 kcal/mol for aqueous solutions; 1.0 kcal/mol for nonaqueous polar protic solvents; 0.9 kcal/mol for polar aprotic solvents; and about 0.6 kcal/mol for nonpolar solvents. Since ESE-EE only requires a molecular geometry as input for a ΔGºsolv prediction, it can be utilized for a rapid screening of ΔGºsolvfor large neutral molecules. However, for ionic solutes, ESE-EE yields larger errors (typically several kcal/mol) and is recommendable for preliminary estimations only. Upon a special refitting, ESE-EE is able to yield partition coefficients with a good accuracy. 相似文献