首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选用共沉淀法以Fe,Mn和Ce三元复合氧化物为活性组分,以Ti O_2为载体,制备出一种铁基中低温SCR脱硝催化剂Fe_2O_3-Mn O_2-Ce O_2/Ti O_2.将制备的铁基中低温SCR脱硝催化剂进行脱硝活性模拟测试,结果表明在150℃~250℃温度区间内,掺杂含量不同的Fe_2O_3-Mn O_2-Ce O_2/Ti O_2复合氧化物催化剂大多都具有持续稳定的脱硝性能,催化效率最高可稳定在91%以上.同时,采用SEM,XRD,TG和EDS等催化剂表征手段,详细分析了其组分分布,空隙结构与催化性质.  相似文献   

2.
以溶剂热法制备氨基功能化的Fe_3O_4纳米颗粒为磁核,结合溶胶-凝胶法和模板法在其表面先后包覆上致密的SiO_2层和介孔TiO_2层,制备了磁性-发光-微波热转换性-介孔结构为一体的多功能核-壳结构纳米复合颗粒,并对其结构、性能及载药能力进行了研究。XRD分析表明:Fe_3O_4表面包覆上了无定形结构的SiO_2和TiO_2。TEM照片表明:所得的纳米复合颗粒具有明显的核壳结构和完美的球形,构成核的Fe_3O_4颗粒的尺寸在40~50 nm之间,Fe_3O_4@SiO_2@mTiO_2核壳结构纳米复合颗粒的尺寸为60~70 nm,壳层厚度约10 nm,并可观察到壳层中清晰的孔状结构。磁性、荧光光谱和微波热转换特性分析表明:该复合颗粒同时具有良好的发光性、磁性和微波热转换特性。N_2气吸附及药物负载率分析表明,该复合颗粒具有较高的比表面积(640 m~2·g~(-1))和介孔结构(孔径约2.8 nm)并且具有较高的药物负载率。  相似文献   

3.
归纳了从钛铁矿中分离铁和二氧化钛的方法,包括亚熔盐法、预氧化法、还原锈蚀法;其次,初步总结了目前国内外制备Fe_3O_4磁性纳米颗粒和TiO_2纳米粒子的方法。最后,对Fe_3O_4/TiO_2复合材料的制备方法包括溶胶-凝胶法、微乳液法、均匀沉淀法作了梳理。Fe_3O_4/TiO_2复合纳米材料很好地解决了单独使用TiO_2作为废水处理催化剂,在实际应用过程中易随水流失,难以回收利用的问题,具有一定的实用性。  相似文献   

4.
归纳了从钛铁矿中分离铁和二氧化钛的方法,包括亚熔盐法、预氧化法、还原锈蚀法;其次,初步总结了目前国内外制备Fe_3O_4磁性纳米颗粒和TiO_2纳米粒子的方法。最后,对Fe_3O_4/TiO_2复合材料的制备方法包括溶胶-凝胶法、微乳液法、均匀沉淀法作了梳理。Fe_3O_4/TiO_2复合纳米材料很好地解决了单独使用TiO_2作为废水处理催化剂,在实际应用过程中易随水流失,难以回收利用的问题,具有一定的实用性。  相似文献   

5.
通过使用聚乙烯吡咯烷酮作为稳定剂,合成了磁性Pd/Fe_3O_4纳米颗粒催化剂。对该催化剂进行粉末X射线衍射、透射电子显微镜、感应耦合等离子体和磁性表征。将Pd/Fe_3O_4催化剂用于Heck反应,检测其催化性能。测试结果表明Pd纳米颗粒负载在Fe_3O_4纳米颗粒上,而且催化剂的尺寸20 nm,并在Heck反应中表现了极好的催化性能。此外,催化剂可以通过磁场回收利用,且催化活性没有显著的降低。  相似文献   

6.
金属有机骨架(MOF)材料是由过渡金属离子与有机配体通过配位键连接构成的高度有序的超分子化合物.这类材料比表面积大,孔隙率高,热稳定性好,而且具有规整可调控的孔结构、易于功能化的骨架金属离子和有机配体,在多相催化领域具有潜在应用前景.将纳米尺寸的MOF材料等多孔材料作为催化剂,可以提高反应传质效率,从而提高催化反应活性,但纳米MOF催化剂的分离和回收困难.将磁性纳米粒子和MOF材料组装成核壳结构的磁性MOF材料,不仅可简化催化剂的分离回收,而且通过控制壳层材料的厚度可以实现催化剂的高活性和高选择性.我们曾将磁核Fe_3O_4纳米粒子交替放入含有一种MOF材料前体的DMF溶液中,采用层层组装法制备了磁性Fe_3O_4@UiO-66-NH_2纳米复合材料.经过十步组装后的材料的透射电镜(TEM)结果证实为核壳结构.但未出现明显的UiO-66-NH_2的X射线衍射(XRD)特征峰,说明壳层材料UiO-66-NH_2的结晶度较低;同时由于其孔结构的破坏或堵塞,在反应中出现明显失活.本文进一步改进自组装方法制备了核壳结构的磁性Fe_3O_4@UiO-66-NH_2纳米复合材料,用XRD、傅里叶变换红外光谱(FT-IR)、TEM、扫描电镜(SEM)和氮气吸附等方法对材料的组成和结构进行了表征,并考察了其在Knoevenagel缩合反应中的催化性能.结果表明,所制材料是以Fe_3O_4为核,以UiO-66-NH_2为壳的核-壳结构材料.经三次组装后出现了一系列UiO-66-NH_2的XRD特征峰,说明采用新方法制备的复合材料中壳层材料UiO-66-NH_2结晶度高,晶体结构规整.N_2吸附-脱附结果表明,材料具有较高的比表面积和孔容.该复合材料在Knoevenagel缩合反应中表现出与纳米UiO-66-NH_2相当或更好的催化活性和选择性,而且因壳层材料的孔道限阈效应而对底物表现出尺寸选择性.由于材料结晶度和晶体结构规整度的提高,催化剂稳定性更好,通过简单磁性分离即可分离和回收催化剂,循环使用4次而未出现明显失活.相对于本课题组之前报道的Fe_3O_4@CuBTC-NH_2,Fe_3O_4@IRMOF-3和Fe_3O_4@UiO-66-NH_2材料,本文所制的Fe_3O_4@UiO-66-NH_2是一类结构更加稳定的高效固体碱催化剂.  相似文献   

7.
结合溶剂热法和沉淀法以氨基功能化的Fe_3O_4纳米颗粒为磁核,在其表面先后包覆上ZnO层和YVO_4:Eu~(3+)发光层,制得集磁性-发光性-微波热转换性能于一体的Fe_3O_4@ZnO@YVO_4:Eu~(3+)多功能复合纳米颗粒,并对其结构和性能进行了研究.X射线衍射(XRD)分析表明,Fe_3O_4表面成功包覆上了六方晶系红锌矿ZnO和四方相YVO_4.透射电子显微镜(TEM)照片表明,所得的复合纳米颗粒具有明显的核壳结构和球形形貌,构成核的Fe_3O_4纳米颗粒的尺寸在30~40 nm,Fe_3O_4@ZnO@YVO_4:Eu~(3+)多功能复合纳米颗粒的尺寸约为50~60 nm,壳层厚度约为10 nm.磁性、荧光光谱和微波热转换特性分析表明,该复合纳米颗粒同时具有良好的发光性、较强磁性和独特的微波热转换特性,在药物传输与可控释放领域具有潜在的应用价值.  相似文献   

8.
多核超顺磁性Ni0.5Zn0.5Fe2O4/SiO2催化载体的制备与表征   总被引:3,自引:2,他引:1  
采用化学共沉淀法与溶胶-凝胶法相结合, 在制备过程中改变磁性纳米粒子和TEOS的引入方式, 成功地制备了多核超顺磁性Ni0.5Zn0.5Fe2O4/SiO2催化剂载体. 采用透射电子显微镜(TEM)、氮气吸附、X射线衍射(XRD)及物理性质综合测试系统(PPMS)对样品进行了表征, 利用永磁铁对载体的分离效果进行了验证. 研究结果表明, 改进制备方法后, 制备的载体比表面积明显增大, 这有利于催化剂在载体上的分散与固载; 样品的饱和磁化强度明显增加, 表明样品具有很好的磁响应能力, 有利于催化剂的分离, 同时, 载体的超顺磁特性也有利于液相催化体系中催化剂的分散.  相似文献   

9.
通过共沉淀法优化制备了Fe_3O_4为内核的磁性核壳式Ce掺杂ZnO催化剂(Fe_3O_4@ZnO-Ce),考察催化剂的稳定性和适用性,利用SEM、BET、ICP-AES、XRD、UV-Vis DRS、VSM、FT-IR等手段对催化剂进行表征,研究温度、pH、催化剂投加量对罗丹明B降解率的影响。结果表明,Ce掺杂ZnO包覆在Fe_3O_4表面形成球状纳米颗粒,平均粒径约100 nm,Fe_3O_4和3%Ce掺杂ZnO最佳物质的量之比为1:20,400℃煅烧2 h。日光模拟灯为光源,在pH为7、水温30℃、催化剂投加量0.2 g/100 mL、90 min罗丹明B降解率达到92%,6次循环套用降解率达到53%以上。  相似文献   

10.
孙尧  丁莹如 《催化学报》1984,5(2):123-129
用浸渍法制备了含Fe_2O_3为3%、载体为MgO的负载型氧化铁催化剂。并对在水煤气变换反应中各个阶段该催化剂样品的MB,TEM,ESCA,AES及比表面测定结果进行了分析,研究了活性组分与载体之间的相互作用。认为在该催化剂上的活性组分主要不是以Fe_2O_3和Fe_3O_4形式存在,很可能是铁离子进入载体表面空位或取代了载体表面的Mg~(2+),从而形成了一种类似于铁镁尖晶石的表面化合物,铁离子得到了很高的分散。  相似文献   

11.
通过浸渍法分别在Al(OH)_3和Al_2O_3中引入SiO_2,经焙烧后制备具有不同表面酸性质的SiO_2-Al_2O_3载体,以上述SiO_2-Al_2O_3及Al_2O_3为载体,采用等体积浸渍法制备Ni负载量为15%的Ni/SiO_2-Al_2O_3催化剂(分别为Ni/SA-1和Ni/SA-2)与Ni/Al_2O_3.采用N2物理吸附、Py-FTIR、NH3-TPD、XRD、H2-TPR和H2-TPD手段对催化剂进行表征,考察了表面酸性质对催化剂催化1,4-丁炔二醇高压加氢性能的影响.结果表明,SiO_2引入方式会影响Ni/Al_2O_3催化剂表面酸性质及活性组分Ni在载体表面的分散行为.在Al(OH)3中引入SiO_2时,Ni/SA-1催化剂不仅活性组分具有高分散度,而且表面具有丰富的L酸位点,L酸位点与Ni活性中心协同作用有效提高了催化剂的高压加氢性能.而在Al_2O_3中直接引入SiO_2时,SiO_2覆盖了Al_2O_3表面的L酸位点,催化剂活性组分分散度较低,表现出低的加氢活性.  相似文献   

12.
青霉素G酰化酶(PGA)是一种重要的工业生物催化剂,常用于以青霉素G为底物生产7-氨基去乙酰氧基头孢烷酸(7-ADCA)和6-氨基青霉烷酸(6-APA)等半合成β-内酰胺类抗生素.然而,PGA较差的稳定性和可重复使用性能限制了其在工业上的广泛应用.因此,将PGA固定在固体载体上是很有必要的,可以形成一种可重复使用的高性能的多相催化剂.用于生物酶固定化的良好载体应具备以下条件:(1)载体表面具有可用于与生物酶多点结合的高密度的官能团;(2)载体具有较大的比表面积以固定更多的生物酶.通常情况下,可以通过减小载体的粒径来增加其比表面积,然而,小粒径的载体很难从反应混合液中分离出来,造成固定化酶回收使用困难.为了将聚合物微球的优异固定化性能与磁性纳米粒子的独特顺磁性结合起来,我们制备了一种含环氧基团的顺磁性聚合物微球作为PGA的固定化载体.但由于Fe_3O_4纳米颗粒具有较高的表面能,在反相悬浮聚合反应过程中容易团聚成大颗粒,从而导致制备的顺磁性聚合物微球的磁体含量、表面形貌和粒径分布存在差异.此外,Fe_3O_4纳米颗粒与聚合反应单体之间的相容性不好,使得部分磁性颗粒不能很好地包埋于聚合物微球内部,影响固定化酶的活性和操作稳定性.本文以N,N′–亚甲基双丙烯酰胺为交联剂,以甲基丙烯酸缩水甘油酯和烯丙基缩水甘油醚为功能性单体,用反相悬浮聚合方法在SiO_2包覆的Fe_3O_4纳米颗粒表面成功制备出含环氧基团的顺磁性聚合物微球.用SEM,FT-IR,XRD,VSM和低温氮气吸附等手段对含环氧基团的顺磁性聚合物微球进行了表征.研究了SiO_2对Fe_3O_4纳米颗粒的包覆和Fe_3O_4/SiO_2纳米颗粒的数量对于固定化酶的初始活性和操作稳定性的影响.SiO_2在反相悬浮聚合过程中发挥重要作用,用SiO_2对Fe_3O_4纳米颗粒进行亲水性改性,有效改善了Fe_3O_4纳米颗粒与聚合反应单体的相容性,将其引入反相悬浮聚合体系中,可以制备得到球形度好、粒径分布均匀和超顺磁性的含环氧基团的顺磁性聚合物微球,其中当Fe_3O_4/SiO_2纳米颗粒的质量比为7.5%时制备的含环氧基团的顺磁性聚合物微球具有最好的PGA固定化性能.PGA通过其活性非必需侧链基团–氨基与顺磁性聚合物微球表面的环氧基团的共价结合来制备顺磁性固定化酶,该固定化PGA的初始活性为430 U/g(wet),在外加磁场的作用下容易回收使用,重复使用10次后可保留99%的初始活性,具有良好的热稳定性和酸碱稳定性,具有较好的工业应用前景.  相似文献   

13.
空气中低浓度甲醛的治理和消除一直备受关注.在较低的反应温度下将甲醛转化为CO_2和H_2O的催化氧化法具有能耗低、效率高和环境友好等优点,被认为是一种最具应用发展前景的甲醛消除技术.在各种催化剂体系中,一些铁基氧化物(Fe_2O_3,FFe_3O_4或ferrihydrite)负载的Pt催化剂表现出较为优异的催化性能,能够在室温下实现甲醛的完全氧化.越来越多的研究表明,载体材料的结构及形貌是影响贵金属催化剂性能的主要因素.因此,深入研究Pt物种在不同类型铁基氧化物表面的分散情况及界面间相互作用,对理解催化剂活性中心的性质,设计制备性能更加优异的负载型贵金属催化剂具有重要科学意义.本文采用共沉淀法一步合成出八面体Fe_3O_4亚微米晶负载Pt催化剂(Pt/Fe_3O_4),考察了不同热处理温度对催化剂催化甲醛氧化反应性能的影响.结果表明,在80°C下热处理的催化剂(Pt/Fe_3O_4-80)具有很高的催化活性,在室温下甲醛的转化率可接近100%.随着催化剂热处理温度的升高,催化剂活性有所降低.此外,Pt/Fe_3O_4催化剂还表现出良好的稳定性,经长时间存放或连续运行后催化剂的活性基本保持不变.此外,在一定湿度范围内(RH=30%–80%),水的存在能够显著提高Pt/Fe_3O_4催化剂的甲醛催化氧化性能.采用各种表征技术对Pt/Fe_3O_4的结构、形貌、价态及氧化还原性等物理化学性质进行了研究.结果表明:采用该合成方法能够得到粒径较为均一、具有尖晶石结构和八面体形貌的Fe_3O_4亚微米晶,尺寸较小的Pt纳米粒子(平均2.5 nm)均匀分布在八面体Fe_3O_4晶体的表面,且Fe_3O_4载体表面还存在一定量的羟基物种.随着热处理温度的升高,催化剂表面的Pt物种和Fe物种的价态均发生明显变化.结果证实,Pt纳米粒子与Fe_3O_4载体间的相互作用力会随着热处理温度的升高而发生明显变化.对于性能较为优异的Pt/Fe_3O_4-80催化剂,Pt纳米粒子与Fe_3O_4载体之间存在着强度适宜的相互作用,能够产生相对较多的Pt-O-Fe Ox和Pt-OH-Fe Ox界面活性位,从而使其能够在较低的反应温度下表现出较强的活化分子氧的能力.此外,反应体系中引入的水分子能够与氧分子在界面活性位上共同活化,形成表面活性-OH物种,从而有效促进催化剂反应性能的提升.  相似文献   

14.
生物质是唯一可再生的有机碳资源,开发清洁高效稳定的催化剂体系,将富氧的生物质及其平台化合物高选择性的C–O键氢解转化为可供石化行业利用的高附加值产品成为当前的研究热点.糠醛可由农林副产物如玉米芯,甘蔗渣和秸秆等中富含的半纤维素经酸水解而得.采用便宜的糠醛及其衍生物糠醇和四氢糠醇为原料,通过温和条件下一步选择氢解合成高附加值的1,2-和/或1,5-戊二醇的研究受到了越来越多的关注,但目前的研究主要集中在Ru,Rh,Pt和Ir等贵金属催化剂,对无铬非贵金属催化剂的研究甚少;此外,目前文献报道催化剂的活性和选择性还有待提高.开发清洁高效的非贵金属催化剂在温和条件下选择氢解糠醇或糠醛是目前面临的一项难题.我们的最新研究发现采用以水滑石为前驱体制备的弱碱性Cu-Mg_3AlO_(4.5)双功能催化剂在糠醇选择氢解反应中表现出优异的催化性能,在413 K和6 MPa的温和条件下可取得约80%的戊二醇总收率.虽然碱性载体有利于稳定糠醇氢解中间体并抑制羟基脱水从而提高戊二醇选择性,但也有文献报道酸性载体或助剂同样对呋喃衍生物的选择氢解制二元醇有促进作用.为了研究固体酸负载的双功能催化剂在糠醇氢解中的催化性能,我们采用共沉淀法制备了酸性Al_2O_3载体分散的不同Cu含量(2–30 wt%)的纳米双功能催化剂,并对比考察了其他不同载体(SiO_2,TiO_2,ZrO_2,MgO和ZnO)负载的催化剂,Al_2O_3负载的Ni,Co和Pt催化剂及商业Cu-Cr催化剂的糠醇氢解性能.研究发现,在金属负载量相同时,Cu-Al_2O_3催化剂表现出最优异的糠醇氢解性能,而Cu-Al_2O_3催化剂的转化率随Cu铜含量的升高先增高后降低,在20 wt%时达最高,而戊二醇的总选择性在10 wt%时达最高.为了揭示Cu-Al_2O_3催化剂在糠醇氢解反应中的构效关系,采用X射线衍射(XRD),透射电镜(TEM),N_2物理吸附,N_2O化学吸附和NH_3/CO_2程序升温脱附(NH_3/CO_2-TPD)等多种物理化学手段对催化剂的结构和表面性质进行了表征.XRD,TEM和N_2O化学吸附的表征结果说明,共沉淀法制备的Cu-Al_2O_3催化剂中Cu颗粒高分散于Al_2O_3载体上,且两者结合紧密.NH_3/CO_2-TPD表征发现,Cu-Al_2O_3催化剂中酸性位占主导地位,随铜含量的升高表面酸量递减.由于不同Cu含量的Cu-Al_2O_3催化剂中Cu颗粒尺寸,酸碱量和Cu与载体之间相互作用等因素的差异,在催化糠醇选择氢解中表现出不同的催化性能.通过关联催化剂中Cu颗粒尺寸与戊二醇生成TOF发现,该反应为结构敏感性反应,催化剂的TOF受Cu颗粒尺寸控制,Cu颗粒尺寸在1.9–2.4 nm范围内时取得最高的催化活性.催化剂的表面酸碱性也是影响Cu-Al_2O_3催化性能的另一重要原因,适当增加Cu-Al_2O_3催化剂的表面酸性可以提高糠醇氢解活性和戊二醇选择性,但是采用强酸性载体时,反应副产物急剧增加而降低戊二醇选择性,增加催化剂的碱性同样对催化活性和选择性不利.通过比较不同制备方法合成的Cu-Al_2O_3催化剂的糠醇氢解性能发现,催化剂中高分散的Cu与酸性Al_2O_3载体之间的高效紧密接触是取得高戊二醇收率的关键,同时催化剂中Cu不同的电子状态,可能也会影响催化性能.在考察催化剂的循环使用过程中发现,催化剂的结构稳定,使用多次后催化剂织构结构未发生明显变化,性能未发生明显下降.此外,我们还考察了反应温度,氢气分压,催化剂量和反应时间等动力学条件对Cu-Al_2O_3催化剂性能的影响,发现催化剂活性和产物的选择性均受反应条件明显影响,在优化条件(413 K,8.0 MPa H2)下,采用共沉淀法制备的10Cu-Al_2O_3催化剂可以取得约70%戊二醇的选择性和60%的总收率.结合对实验结果的分析及相关文献报道,我们还推测了Cu-Al_2O_3双功能催化剂上糠醇氢解的反应路径.  相似文献   

15.
《电化学》2017,(6)
制备对醇氧化反应具有优异电活性的钯催化剂是醇燃料电池研究的重要内容.本文用硼氢化钠还原法制备了钯纳米颗粒,然后沉积在Fe_3O_4/C复合物表面,得到了不同Fe_3O_4负载量的Pd/Fe_3O_4-C催化剂.透射电镜(TEM)检测显示,钯纳米颗粒均匀地分散在Fe_3O_4/C表面.对制备好的Pd/Fe_3O_4-C催化剂进行了循环伏安法(CV)、计时电流(CA)和电化学阻抗谱(EIS)的测试,研究了其在碱性介质中对C1-C3醇类(甲醇、乙醇和丙醇)氧化的电催化活性.结果表明,所制备的不同Fe_3O_4负载量的Pd/Fe_3O_4(2%)-C、Pd/Fe_3O_4(5%)-C、Pd/Fe_3O_4(10%)-C和Pd/C催化剂中,Pd/Fe_3O_4(5%)-C催化剂表现出最高的醇氧化电流密度.依据循环伏安(CV)数据,Pd/Fe_3O_4(5%)-C催化剂对甲醇、乙醇、正丙醇和异丙醇氧化的阳极峰电流密度分别是Pd/C催化剂的1.7、1.4、1.7和1.3倍.Pd/Fe_3O_4(5%)-C催化剂对乙醇氧化的电荷传递电阻也远低于Pd/C催化剂.制备的所有催化剂对C1-C3醇类电氧化的电流密度大小排序如下:正丙醇乙醇甲醇异丙醇.此外,碳粉中Fe_3O_4纳米颗粒的存在提高了钯纳米颗粒的电化学稳定性.  相似文献   

16.
通过反向化学共沉淀法制备PrxCe1-xO2-δ稀土纳米复合氧化物作为助催化掺杂剂,将其包覆在多壁碳纳米管(MWCNTs)的表面作为催化剂复合载体,然后使用了柠檬酸盐-KBH4液相还原法制备了粒径分布均匀、性质稳定的Pt纳米溶胶,并沉积在上述载体中得到负载型Pt-PrxCe1-xO2-δ/CNT复合电催化剂,制备的催化剂中Pt载量为20%(质量分数).使用XRD,SEM等手段对催化剂样品进行了物相形貌表征.使用循环伏安法对催化剂的电化学性能进行了测试.结果表明,经Pr,Ce纳米复合氧化物掺杂的催化剂比传统Pt/CNT催化荆具有更低的甲醇氧化电位和更好的耐中间产物毒化能力.  相似文献   

17.
采用液相氢气两步还原法制备了双金属Au@Pt核壳纳米粒子,通过直接吸附法将纳米粒子均匀地分散于载体上,制备出低负载量的双金属Au@Pt/Al_2O_3催化剂,并且评价了催化剂对甲苯的催化氧化性能。通过TEM、XRD、XPS、N_2吸附-脱附和H_2-TPR等对催化剂进行了表征。结果表明,与单金属Au和Pt催化剂相比,双金属Au@Pt核壳催化剂表现出更高的催化活性,具有很好的稳定性和选择性,在甲苯体积分数为1×10~(-3),气体空速为18 L·g~(-1)·h~(-1)的条件下,Au_1@Pt_2/Al_2O_3核壳催化剂具有优异的催化氧化性能,其中甲苯实现98%的转化率的温度(T_(98))为195℃。由XPS结果可知,在Au和Pt之间存在电子转移促进了Pt上活性氧物种的形成,催化剂的活性组分主要以Au~0和Pt~0的形式存在,并广泛分布在载体的表面上。Au@Pt纳米粒子与载体Al_2O_3之间的强相互作用也是提高甲苯催化氧化活性的重要因素。  相似文献   

18.
1.前言 采用具有ZSM-5,ZSM-11和ZSM-48沸石结构的高硅沸石作为CO加氢反应的催化剂载体,有效地控制了产物分布范围。AlPO_4-5分子筛的孔道结构和表面性质决定了它同样可作为催化剂载体以代替沸石。关于AlPO_4-n分子筛的研究,目前多着重于合成和结构方面,以其作为催化剂和催化剂载体的报道较少。由于AlPO_4-n分子筛无离子交换性,致使负载金属AlPO_4-n催化剂的制备受到限制。根据“某些盐类或氧化物与高比表面载体混合,在低于熔点的适当温度下焙烧,这些盐类或氧化物在载体表面能自发分散”的原理,本文采用固相焙烧法制备了系列Fe_2O_3/AlPO_4-5催化剂并用于CO加氢反应,研究铁活性组分在AlPO_4-5分子筛表面的分散状况及催化活性。  相似文献   

19.
Fe_2O_3/SiO_2对异辛醇氧化生成异辛酸反应的催化性能研究   总被引:2,自引:0,他引:2  
采用浸渍法制备了系列的Fe_2O_3/SiO_2催化剂, 并用XRD, BET, TG-DTG和SEM等手段对催化剂进行了表征;考察了不同Fe负载量和焙烧温度的Fe_2O_3/SiO_2催化剂对异辛醇氧化生成异辛酸反应的催化活性的影响, 确定了最佳催化剂制备条件. 结果表明, Fe负载量为4%, 焙烧温度为500℃时, 催化剂活性组分Fe_2O_3的在载体上分散均匀, 晶粒大小基本一致, 催化剂比表面积较大, 催化剂活性达到最佳, 异辛酸选择性最高可达55.14%, 收率可达22.41%.  相似文献   

20.
采用简便的化学浸渍法制备了新型磁性可分离的纳米复合物H_5PMo_(10)V_2O_(40)/Fe_3O_4/g-C_3N_4(PMoV/Fe_3O_4/g-C_3N_4),并进行了详细的表征,采用电位滴定法测定了催化剂酸性.该PMoV/Fe_3O_4/g-C_3N_4纳米复合物在硫化物选择氧化为砜或亚砜的反应中表现出较高的催化活性;考察了在优化反应条件下,它在含硫(包括二苯并噻吩DBT)模拟油或真实石油的催化氧化反应中的催化性能;特别考察了各种含氮化合物,以及1-环和2-环芳香烃作为共溶剂对DBT脱硫效果的影响.采用外加磁场即可方便地将该催化剂从反应混合物中分离和回收.选取最好的萃取剂,通过简单的倾滤就可很容易地将剩余反应物从产物中分离出来.该纳米催化剂具有高催化活性,且容易重复使用,至少可以重复使用4次而未见催化活性明显下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号