首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了醋酸铑[Rh2(OAc)4]、手性亚磺酰胺基脲和非手性磺酸共催化的α-重氮酯与酰胺化合物的不对称N—H插入反应.研究发现α-重氮酯在醋酸铑催化下形成金属卡宾,该金属卡宾与酰胺反应生成潜手性活泼叶立德中间体.在催化剂量的手性亚磺酰胺基脲和非手性磺酸存在下,潜手性叶立德中间体发生不对称质子化,合成了手性α-氨基酸衍生物.反应过程中,手性亚磺酰胺基脲和非手性磺酸作为"手性质子梭"催化不对称质子迁移从而实现了反应的对映选择性控制.该方法发展了非手性铑、手性亚磺酰胺基脲和非手性磺酸不对称共催化体系,为合成α-氨基酸衍生物提供了一种新途径,反应收率最高可达84%,对映选择性最高可达77%.  相似文献   

2.
过渡金属催化卡宾对O-H键的不对称插入反应是合成手性醇及其衍生物的直接方法.近年来,人们发展了多种手性催化剂实现了重氮酯衍生的金属卡宾对醇、酚、羧酸甚至水的O-H键的高对映选择性插入反应,但是重氮酮作为卡宾前体的不对称O-H键插入反应鲜有成功的例子.以非手性双铑络合物和手性螺环磷酸组成的协同催化体系,首次实现了α-重氮酮对醇的O-H键的不对称插入反应,获得了较高的收率和高达95%ee的对映选择性.反应为手性α-烷氧基酮这类重要手性化合物提供了高效的合成方法.还通过密度泛函理论计算,对反应机理进行了初步研究,发现水很可能参与了手性磷酸促进的烯醇中间体质子转移过程.  相似文献   

3.
重氮化合物在过渡金属催化剂作用下的分解以及后续反应在有机合成上得到了非常广泛的应用. 综述了近年来钯催化重氮化合物反应的研究进展, 主要包括环丙烷化反应、聚合反应、插入反应、交叉偶联反应及其机理的探讨.  相似文献   

4.
手性有机硼化合物在有机合成、医药、材料等诸多领域中有广泛的应用,发展该类化合物的高效合成方法一直广受关注.此前,我们发展了过渡金属催化卡宾对硼氢键(B—H)的插入反应,并实现了α-重氮酯对B—H键的不对称插入反应.本文以手性螺环双噁唑啉配体和铜的络合物作为催化剂,首次实现了α-重氮酮对膦-硼烷加合物的B—H键不对称插入反应,获得了较高的收率和高达83%ee的对映选择性.该研究成果是为数不多的以α-重氮酮作为卡宾前体的不对称杂原子氢键插入反应,为手性α-硼取代酮化合物这类新的有机硼化合物的合成提供了有效方法.  相似文献   

5.
报道了有关二价铑络合物催化的重氮酰胺和重氮酯的分解反应研究 .这些重氮化合物在二价铑催化下所显示的不同反应途径说明铑 (II)卡宾的反应除了电子效应之外 ,还可能受到反应底物的构象控制 .在一些情况下 ,反应底物的构象可能成为控制反应化学选择性的主要因素 .  相似文献   

6.
报道了有关二价铑络合物催化的重氮酰胺和重氮酯的分解反应研究.这些重氮化合物在二价铑催化下所显示的不同反应途径说明铑(Ⅱ)卡宾的反应除了电子效应之外,还可能受到反应底物的构象控制.在一些情况下,反应底物的构象可能成为控制反应化学选择性的主要因素.  相似文献   

7.
《有机化学》2015,(3):739
<正>Angew.Chem.Int.Ed.2015,54,1608~1611路易斯酸催化α-重氮酯和羰基化合物的同系化反应是合成β-酮酸酯化合物的有效方法,反应经历亲核加成、重排历程,其区域选择性复杂,立体选择性控制困难.以醛、环酮以及活化酮等羰基化合物为亲电试剂的不对称催化反应已有成功报道,仅有的一例简单酮与α-重氮酯的反应,在手性双氮氧-钪配合物催化剂条件下得到了α-胺化产物.四川大学化学学院冯小明、李伟等基于他们在这一领域的系统研究,设计了分子内的简单酮与α-重氮酯的不对称同  相似文献   

8.
陈佰灵  王振  张有灿  赵志刚  陈自立 《催化学报》2018,39(10):1594-1598
过渡金属催化重氮化合物的卡宾转移反应是有机合成反应的重要研究对象.在这一类反应中,包括环丙烷化、X-H(X=C,N,O,Si,S)插入以及羰基/亚胺叶立德环加成等反应得到了广泛的研究.2003年,胡文浩和Doyle课题组报道了一种新型的反应,即亚胺捕获看似不稳定的氨基叶立德中间体,合成具有高非对映选择性的1,2-二胺化合物.之后,他们又报道了一系列有关氨基叶立德和氧叶立德的研究,与不同的捕获剂,如酮,醛,β,γ-不饱和α羰基羧酸酯和偶氮二酸酸酯等发生反应,生成多种多样的产物类型,基本上都是采用Rh(Ⅲ)催化剂.迄今为止,没有采用其他类型的过渡金属催化剂的报道.最近,本课题组研究发现,银盐可以作为重氮化合物卡宾转移反应的催化剂,实现了重氮化合物与醛的[2+1]环加成反应合成环氧乙烷类化合物,及重氮化合物与醛、炔/烯三组分的[2+2+1]环加成反应合成二氢呋喃/四氢呋喃类化合物,在这些反应中,加入不同的配体可以调节Ag(Ⅰ)催化剂的催化活性,从而实现不同的反应过程.基于此,本文将探索Ag(Ⅰ)做催化剂催化重氮化合物与芳基胺及亚胺的三组分反应合成一系列1,2-二胺类化合物.研究发现,采用AgOTf/双噁唑啉配体配体作为催化剂组合,可以顺利地实现Ag(Ⅰ)催化重氮酯、芳基胺及亚胺的三组分反应.尝试了不同的配体,包括膦配体、卡宾配体以及双噁唑啉配体,最后发现,双噁唑啉配体配位的Ag(Ⅰ)催化反应的效果最好,极大地提高了Ag(Ⅰ)催化剂的催化活性,其具体的作用机理值得进一步研究.反应中,Ag(Ⅰ)催化剂的Lewis酸性对二胺产物的非对映选择性有较大的影响.其中,在对硝基苯基亚胺的反应中,产物的非对映选择性很高,大于铑催化反应的结果;而在其他类型亚胺的反应中,反应的非对映选择性较差.另一方面,由于Ag(Ⅰ)的Lewis酸性,反应过程中发生亚胺与芳基胺的氨基交换反应,从而导致氨基交换的二胺副产物的生成.本文对不同反应底物的各种效应进行了比较详细的研究.  相似文献   

9.
重氮化合物是一类环境友好、高效的反应试剂,已经被广泛应用于金属卡宾C—H插入反应.近些年,重氮化合物在一种新型的催化模式下参与到过渡金属催化的C—H活化反应中,能够实现芳烃和杂芳烃C—H键的烷基化反应.综述了各种金属催化下重氮化合物参与的C—H烷基化反应,以及相关的环化反应的最新研究进展,主要介绍各反应的特点、反应机理和合成应用,并展望它的发展前景.  相似文献   

10.
王剑波 《有机化学》2001,21(11):980-985
本项工作应用物理有机化学的经典方法-Hammett线性自由能相关,对在有机合成中已得到广泛应用的Rh(Ⅱ)-卡宾分子内C-H插入反应的机理进行了深入的探讨。在α-重氮羰基化合物的合成应用方面,发现了Cu(acac)2可以有效地催化α-重氮羰基化合物分解并发生选择的分子内N-H键插入反应。此外,应用α-重氮羰基化合物在Ag(Ⅰ)催化剂的作用下的Wolff重排反应可以有效地合成光学纯的α-内酰胺。  相似文献   

11.
黄丹  鄢明  沈琪 《有机化学》2007,27(6):739-743
研究了在过渡金属配合物催化下α-重氮-β-二羰基化合物与醇的插入反应, 考察了重氮化合物的结构、醇的结构、催化剂的性质、反应溶剂和反应温度对这一反应的影响. 发现当重氮化合物与甲醇的物质的量比为1∶10, 1 mmol% Rh2(OAc)4为催化剂和回流的苯的条件下, 反应能够以高的化学产率生成α-甲氧基-β-二羰基化合物. 手性醇衍生的重氮乙酰乙酸酯反应的产物中两种非对应异构体的比例为3∶2~1∶1.  相似文献   

12.
靳丽丽  常涛  景欢旺 《催化学报》2007,28(4):287-289
研究了钌卟啉络合物催化二氧化碳与环氧化合物的偶联反应,考察了不同钌卟啉络合物、助催化剂、反应温度、催化剂用量及不同共催化剂对二氧化碳与环氧化合物偶联反应的影响.结果表明,当以Ru(TPP)(PPh3)2为催化剂,重氮乙酸乙酯为助催化剂,苯基三甲基三溴化铵为共催化剂,且底物∶催化剂∶助催化剂∶共催化剂摩尔比为200∶1∶1∶2,反应温度为323 K时,不同环氧化合物都取得了较高的环碳酸酯产率.  相似文献   

13.
手性胺—铜配合物的合成及其在菊酸不对称合成中的应用   总被引:6,自引:0,他引:6  
张静夏 《分子催化》1997,11(1):41-44
报导了新型希夫碱-铜配合物的合成,及其对菊酸不对称合成的催化诱导效应,用降解脱氢松香胺和水杨醛反应,形成希夫碱,再与醋酸铜反应,制行希夫碱-铜配合物。将该配合物作为手性催化剂,催化重氮乙酸乙酯及重氮乙酸冰片酯与2,5-二甲基-2,4-己二烯合成菊酸的反应,讨论了重饩  相似文献   

14.
在三氟甲磺酸铜催化下,苯烯基重氮甲酯和苯胺(2)在多种溶剂下发生插入反应,主要产物是α,β-不饱和γ-氨基酸衍生物.以二氯甲烷为溶剂时,产物的区域选择性随2上取代基不同而发生变化.通过在铜催化剂中加入配体,可以获得低的对映选择性.  相似文献   

15.
报道了有关二价铑络合物催化的重氮酰胺和重氮酯的分解反应研究。这些重氮 化合物在二价铑催化下所显示的不同反应途径说明铑(II)卡宾的反应除了电子效 应之外,还可能受到反应底物的构象控制。在一些情况下,反应底物的构象可能成 为控制反应化学选择性的主要因素。  相似文献   

16.
本工作利用可见光催化剂和Lewis酸双催化体系,在可见光条件下实现了重氮乙酸乙酯与苯胺衍生物或氮杂芳烃的N-烷基化反应,合成了一系列α-氨基酸类化合物.该反应条件温和,有良好的官能团兼容性和底物普适性.机理验证实验证明该反应涉及了自由基机理,由重氮烷在光催化剂作用下通过proton-coupledelectrontransfer(PCET)过程形成了烷基自由基,并在Lewis酸催化作用下与胺发生自由基偶联反应形成N-烷基化产物.这种新的催化机制进一步丰富了重氮化合物在可见光化学反应中的应用类型与范围.  相似文献   

17.
在过渡金属催化下,苯基重氮乙酸甲酯分解产生的卡宾与苄醇生成羟基叶立德,与N-甲基靛红发生类似于羟醛缩合的反应.铜催化剂和其他路易斯酸用于催化这类三组分反应中,获得了与二价铑不同的化学和立体选择性.手性铜催化剂初步实现了不对称催化,获得了中等程度的对映选择性.  相似文献   

18.
α-羰基重氮化合物易于制备,在光照和加热等条件下脱去氮气形成高反应活性的卡宾中间体,通过卡宾介导的各类反应可以高效构筑多种化学键,其中N—H插入反应可以实现高效构筑C—N键,在有机合成和药物合成领域得到广泛应用.总结了在过渡金属、有机小分子、生物大分子催化及光和热条件下实现α-羰基重氮化合物对N—H键的插入反应的研究进展,主要介绍了反应机理和合成应用,并对发展前景进行展望.  相似文献   

19.
卓启明  詹绍琦  段乐乐  刘畅  吴秀娟  Mårten S.G.Ahlquist  李福胜  孙立成 《催化学报》2021,42(3):460-469,中插35-中插47
水氧化反应可以提供四个电子和四个质子,反应产物是可以资源化的氧气,因而,水氧化反应是大规模能源转化和存储技术理想的阳极反应.但是,由于水氧化反应具有较高的热力学能垒,涉及四个电子和四个质子的转移过程以及氧-氧键(O–O)的形成,是一个耗能高且动力学缓慢的复杂反应.因此,开发高效的水氧化催化剂来加速水氧化反应速率,对于能源转化和存储相关技术至关重要.然而,人们对水氧化催化剂的合理设计和在催化反应中提高反应活性的方法了解甚少,在温和条件下促进O–O键的有效形成仍然是一个根本性的挑战.迄今为止,关于水氧化分子催化剂的研究主要集中在催化剂的配位结构(第一配位环境)和催化效率之间的关系上,水氧化分子催化剂的第二配位环境对其催化活性的影响尚未得到充分研究.将催化剂引入到电极表面时,其催化环境和均相反应时完全不同.因此,水氧化催化剂在电极表面的催化反应动力学、质子耦合电子转移过程以及其O–O键形成机理可能发生改变.本文以4-乙烯基吡啶为轴向配体的[Ru(bda)](络合物1,bda=2,2’-联吡啶-6,6’-二羧酸)水氧化分子催化剂,通过电化学聚合的方法将络合物1固载在玻璃碳电极表面,用于研究第二配位环境对电极表面水氧化分子催化剂催化机理的影响.通过直接聚合络合物1在玻璃碳表面得到电极材料poly-1@GC;将4-三氟甲基苯乙烯和苯乙烯作为限制单元分别与络合物1共聚,得到电极材料poly-1+P3F@GC和poly-1+PSt@GC.通过一系列电极表面动力学方法和DFT计算分别求出催化剂在三种电极材料中的反应级数ρcata、催化剂的溶液质子-原子转移性质、催化剂的水氧化氘动力学同位素效应KIEsH/D,以及[Ru(bda)]催化剂在不同材料中的偶极矩的变化.通过对比催化剂在不同电极材料中的催化行为和相关关键参数发现,电极表面催化剂的第二层配位环境对其水氧化反应过程中的O–O键形成机制和质子耦合电子转移过程有着显著的影响.[Ru(bda)]在直接聚合的电极材料poly-1@GC中,通过自由基耦合机理(I2M)形成O–O键.而当[Ru(bda)]与4-三氟甲基苯乙烯和苯乙烯共聚时,由于[Ru(bda)]催化剂被分散,不利于自由基耦合机理的发生,[Ru(bda)]在电极材料poly-1+P3F@GC和poly-1+PSt@GC中主要通过水分子亲核进攻机理进行(WNA)催化水氧化.同时,具有强偶极矩的4-三氟甲基苯基能够稳定[Ru(bda)]在催化过程的中间体,可以使引发O–O键生成的关键物种RuV=O的氧化电位发生明显的负向移动,使得[Ru(bda)]在poly-1+P3F@GC可以更容易触发水氧化反应,进而加快了[Ru(bda)]采用水分子亲核进攻机理时的催化反应速率.  相似文献   

20.
手性磷酸催化剂在不对称合成中的应用   总被引:2,自引:0,他引:2  
陈小芬  刘增路  毛振民 《化学进展》2008,20(10):1534-1543
手性磷酸是2004年报道的一类具有新型结构的强酸性Bronsted酸催化剂,近几年来的研究取得了很大的进展,已经成为有机小分子催化剂的一个重要分支。手性磷酸在催化一系列亚胺的加成和还原反应比如Mannich、亚胺的氢转移、亚胺的膦酰化、Pictet-Spengler、 Strecker、aza-Diels-Alder、 Friedel-Craft和α-重氮酯的烷基化等反应时都表现出了非常好的催化活性和立体选择性。本文主要综述了手性磷酸催化剂应用于亚胺相关反应的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号