首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
采用水热-溶剂热两步法制备了BiPO4/BiVO4复合材料. FESEM和TEM分析结果表明, BiVO4呈高{010},{110}暴露晶面的截角双锥状, BiPO4纳米颗粒较均匀地附着在BiVO4表面上, 形成了异质结. 光电流测试结果表明, 异质结能促进光生载流子的有效转移和分离. 在可见光作用下, BiPO4/BiVO4可有效降解罗丹明B, 当BiPO4与BiVO4的投料摩尔比为3:10时, 样品的光催化活性最优.  相似文献   

2.
采用一步滴涂法在掺氟二氧化锡(FTO)导电玻璃上制备了Bi1-xFexVO4(x=0, 0.05, 0.10, 0.25, 0.40)薄膜, 表征了其结构、 形貌、 光学以及光电化学方面的性质. 结果表明, 掺入Fe后Bi1-xFexVO4薄膜的光电流密度与 BiVO4薄膜相比均有所提高, 其中25% Fe-BiVO4薄膜表现出最优的光电化学性能. 在0.1 mol/L磷酸缓冲溶液(pH=7.0)中, 1.23 V(vs. RHE)电势下25% Fe-BiVO4薄膜的光电流密度为0.50 mA/cm2, 与BiVO4薄膜的0.15 mA/cm2相比提高了3倍多. 结合X射线衍射(XRD)、 拉曼光谱(Raman)和X射线光电子能谱(XPS)表征结果证实Fe3+以FeVO4的形式存在于Bi1-xFexVO4薄膜中, 形成了BiVO4/FeVO4复合物薄膜. 紫外-可见光谱(UV-Vis)结果显示, 所有Bi1-xFexVO4薄膜的禁带宽度均为2.4~2.5 eV. 25% Fe-BiVO4薄膜光电化学性能的提升主要归因于光生载流子转移效率(ηtrans)和分离效率(ηsep)的提高. 能级结构图表明, BiVO4和FeVO4之间可以形成Type Ⅱ型能级结构排列, 可以促进光生载流子的分离与转移, 是25% Fe-BiVO4薄膜光电化学性能提升的内在机理.  相似文献   

3.
采用刮刀法制备了压制BiVO4膜电极,研究了电极在0 1 mol/L NaOH中的光电化学性质. 发现相对于中性电解质,其在碱性电解质中的光电流增大,稳定性提高. 结合循环伏安分析中间产物的还原特性,认为光催化氧化水作用是通过四空穴亲核反应历程进行的. pH值升高有利于亲核反应,过氧化物中间产物累积较少. 在较高的偏压的碱性溶液中,光氧化水的机制可能涉及铋的中间物质.  相似文献   

4.
采用水热/水浴两步法构筑了p-n型Ni WO4(NWO)/Zn In2S4(ZIS)异质结,研究了不同含量的NWO对ZIS物相组分、形貌结构、能带结构、光谱吸收及光解水析氢性能等的影响,并采用一系列表征手段探讨了NWO/ZIS异质结的光催化机理.结果表明,负载NWO后,ZIS物相组分及形貌结构未发生显著变化,两种材料界面接触紧密且分布均匀;在可见光辐照下,NWO/ZIS异质结光解水析氢性能得到了显著提升,其中,最佳样品NWO-35/ZIS析氢速率达到5204.8μmol·g-1·h-1,为纯相ZIS(1566.4μmol·g-1·h-1)的3.32倍;循环实验结果表明,NWO/ZIS样品具有很好的光稳定性;能带结构和光电子动力学表征结果证实了p-n型异质结内建电场驱动的光生载流子的传输机制.  相似文献   

5.
通过化学浴和连续离子层沉积法构筑了BiVO4/CdS和CdS/BiVO4两种S型异质结薄膜光电极. 利用扫描电子显微镜(SEM)、 X射线衍射(XRD)、 紫外-可见吸收光谱(UV-Vis)以及电化学阻抗谱(EIS)对其形貌、 结构和光电性能进行了表征, 测试了两种薄膜电极的光催化和光电催化产氢性能. 结果表明, CdS和BiVO4之间形成S型异质结, BiVO4/CdS表现出最佳的光催化产氢性能, 而CdS/BiVO4表现出最佳的光电催化产氢性能. 借助表面光电压技术探究了两种薄膜电极中S型异质结内建电场的形成过程和载流子传输的机制.  相似文献   

6.
太阳能驱动的光电化学(PEC)水分解可以有效地将太阳能转化为化学能,作为解决环境排放和能源危机最具前景的途径之一,已经引起了科学界的广泛关注.PEC水分解系统由两个半反应组成:在光阳极上的析氧反应(OER)和光阴极上的析氢反应(HER).PEC系统的太阳能转化效率主要由光阳极/电解质界面的OER过程所决定,这是一个非常复杂且涉及质子偶联的多步四电子转移过程.钒酸铋(BiVO4)是应用于PEC水分解的典型且具有实际应用前景的光阳极材料之一.然而,由于不良的表面电荷转移、电荷在光阳极/电解质结面处的表面复合以及缓慢的OER动力学等因素,导致BiVO4的PEC性能受到严重限制.本文开发了一种新颖有效的解决方案,以低成本、高电导率和具有快速电荷转移能力的硫化钴装饰来提升BiVO4光阳极的PEC活性,X射线多晶衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征,研究结果表明CoS成功装饰于BiVO4表面.采用紫外-可见吸收光谱(UV-VisDRS)研究了BiVO4和复合光阳极CoS/BiVO4的光学性质,结果表明,与纯的BiVO4相比,CoS/BiVO4光阳极在可见光范围内光吸收能力有所增强.将制备的BiVO4和CoS/BiVO4光阳极应用于PEC分解水实验中,结果表明,相对于1.23 V可逆氢电极,在光照下,CoS/BiVO4光阳极的光电流密度显著提升,可高达3.2 m Acm-2,是纯BiVO4的2.5倍以上.与纯BiVO4相比,CoS/BiVO4光阳极的起始氧化电位显示出负向偏移0.2 V,表明析氧过电势得到有效减小.入射光子转换效率(IPCE)测试结果表明,CoS/BiVO4光阳极的入射光子转换效率在500 nm之前的可见光范围内得到明显提升,其中,CoS/BiVO4的IPCE值在380 nm处达到最大.此外,由于CoS的装饰作用,CoS/BiVO4光阳极的电荷注入效率和电荷分离效率均得到较大的提升,分别达到75.8%(相较于纯BiVO4光阳极的36.7%)和79.8%(相较于纯BiVO4光阳极的66.8%).电化学阻抗谱(EIS)测试结果表明,通过CoS的装饰,CoS/BiVO4光阳极的界面电荷转移电阻得到有效降低,证明其界面电荷转移动力学得到有效提升.光致发光光谱测试结果表明,CoS的装饰显著提高了BiVO4的光生电子-空穴对的分离效率,进一步证明BiVO4表面的CoS装饰在其PEC分解水中起着非常积极的作用.本文为通过表面修饰设计应用于PEC水分解的有效的光阳极提供了新思路.  相似文献   

7.
以自制的BiVO4纳米粉制备膜电极, 采用电化学方法较系统地研究了退火温度和膜厚对BiVO4膜电极的光电化学行为和电子输运与复合的影响. 结果表明: 退火温度和膜厚对BiVO4膜电极的光电特性有显著的影响. 膜厚为6.75 μm时, BiVO4膜电极具有最佳的光电化学特性. 退火温度低于500 °C时, 膜电极的光电活性随着温度的升高而增强, 至500 °C时达到最大值; 此后膜电极内的体相缺陷明显增加, 导致其光电活性逐渐降低. BiVO4膜电极有良好的可见光光电转换效率, 并利用其单色光转换效率曲线计算得到BiVO4的带隙为2.36eV, 采用莫特-肖特基电化学法测得其平带电位为-0.7 V (vs Ag/AgCl). 上述结果为BiVO4光催化体系的优化提供了重要的参考.  相似文献   

8.
黄艳  傅敏  贺涛 《物理化学学报》2015,31(6):1145-1152
用简单的超声分散法合成了具有可见光响应的类石墨氮化碳(g-C3N4)/BiVO4复合光催化剂. 采用X射线衍射(XRD), X射线光电子能谱(XPS), 扫描电子显微镜(SEM), 透射电子显微镜(TEM), 紫外-可见(UV-Vis)分光光谱, 傅里叶红外变换(FTIR)光谱, 荧光发射谱(PL)和光电流响应等技术对所制备催化剂进行相关表征. 通过可见光下(λ> 420 nm)光催化还原CO2的性能来评价样品的光催化活性, 发现不同复合比的催化剂中, 含40% (w) g-C3N4的复合催化剂表现出最高的光催化活性, 其催化活性分别为纯g-C3N4纳米片和纯BiVO4的催化活性的2倍和4倍.光催化活性增加的主要原因是g-C3N4和BiVO4之间形成了异质结, 且相互间能级匹配, 有利于光生电子和空穴的分离.  相似文献   

9.
李娜  王慕恒  赵勇  姚瑞  刘光  李晋平 《无机化学学报》2019,35(10):1773-1780
钒酸铋(BiVO_4)是最有前景的将太阳能转化为氢能(STH)的光阳极材料之一,但其本身严重的电子-空穴复合严重影响了其实用性。本文中,我们报道了用一步电沉积法将高效的二元ZnCo-LDH助催化剂沉积在钒酸铋(BiVO_4)光阳极上,大大提升了钒酸铋(Bi VO4)的光吸收能力,并且加速了水氧化反应动力学,显著促进了光生空穴向半导体表面的转移,减轻了表面电荷复合。BiVO_4/ZnCo-LDH光阳极在1.23 V(vs RHE)偏压下,0.5 mol·L-1磷酸钾(KPi)电解液中的光电流密度达到2.85 mA·cm~(-2),是纯BiVO_4的2.59倍,且起始电位(Von)从930 m V下降到270 m V。BiVO_4/ZnCo-LDH复合光阳极表现出65%的高表面电荷分离效率(1.23 V(vs RHE)),而纯BiVO_4的仅为30%。  相似文献   

10.
光生电子-空穴对的复合被认为是限制BiVO4材料光电催化转换效率的重要原因之一。基于此,通过简单的水热-煅烧方法构筑了BiVO4/ZnFe2O4同型异质结光阳极,BiVO4/ZnFe2O4复合光阳极在1.23 V(vs RHE)下的光电流密度为3.33 mA·cm-2,较纯BiVO4提升了2倍(1.20 mA·cm-2)。相关的结构及性能测试表明,BiVO4和ZnFe2O4形成了带隙错开的n-n异质结,使得光生载流子得到有效分离,更有效地参与水氧化过程,进而提高了BiVO4的光电催化水分解性能。  相似文献   

11.
Bismuth Vanadate (BiVO4) photoanode has been popularly investigated for promising solar water oxidation, but its intrinsic performance has been greatly retarded by the direct pyrolysis method. Here we insight the key restriction of BiVO4 prepared by metal–organic decomposition (MOD) method. It is found that the evaporation of vanadium during the pyrolysis tends to cause a substantial phase impurity, and the unexpected few tetragonal phase inhibits the charge separation evidently. Consequently, suitably excessive vanadium precursor was adopted to eliminate the phase impurity, based on which the obtained intrinsic BiVO4 photoanode could exhibit photocurrent density of 4.2 mA cm−2 at 1.23 VRHE under AM 1.5 G irradiation, as comparable to the one fabricated by the currently popular two-step electrodeposition method. Furthermore, the excellent performance can be maintained on the enlarged photoanode (25 cm2), demonstrating the advantage of MOD method in scalable preparation. Our work provides new insight and highlights the glorious future of MOD method for the design of scale-up efficient BiVO4 photoanode.  相似文献   

12.
Monoclinic bismuth vanadate (BiVO4) has been used as an efficient photoanode material for photoelectrochemical water oxidation owing to its suitable band gap and nontoxicity. Nevertheless, the practical application of BiVO4 photoanode has been severely limited by the surface charge recombination and sluggish kinetic, which leads to the obtained photoactivity of BiVO4 is much lower than its theoretical value. In this case, ZnCoFe-LDH thin layer is conformally decorated on the porous BiVO4 photoanode through a simple electrodeposition process. The results show that a boosted photoactivity and a remarkably enhanced photocurrent density (3.43 mA cm−2 at 1.23 VRHE) are attained for BiVO4/ZnCoFe-LDH. In addition, the optimized BiVO4/ZnCoFe-LDH photoanode exhibits significant negative shift in the onset potential (0.51 VRHE to 0.21 VRHE), promotes charge separation efficiency (49.3% to 60.4% in the bulk, 29.6% to 61.9% on the surface at 1.23 VRHE) and enhanced IPCE efficiency (25.5% to 54.7% at 425 nm) compared with that of bare BiVO4 photoanode. It is demonstrated that the boosted photoactivity of BiVO4/ZnCoFe-LDH photoanode is mainly ascribed to the synergy effects of the formation of p-n heterojunction between ZnCoFe-LDH and BiVO4 to accelerate the photogenerated charge transfer and separation, broaden light absorption, as well as promote the surface water oxidation kinetics.  相似文献   

13.
Water‐splitting photoanodes based on semiconductor materials typically require a dopant in the structure and co‐catalysts on the surface to overcome the problems of charge recombination and high catalytic barrier. Unlike these conventional strategies, a simple treatment is reported that involves soaking a sample of pristine BiVO4 in a borate buffer solution. This modifies the catalytic local environment of BiVO4 by the introduction of a borate moiety at the molecular level. The self‐anchored borate plays the role of a passivator in reducing the surface charge recombination as well as that of a ligand in modifying the catalytic site to facilitate faster water oxidation. The modified BiVO4 photoanode, without typical doping or catalyst modification, achieved a photocurrent density of 3.5 mA cm?2 at 1.23 V and a cathodically shifted onset potential of 250 mV. This work provides an extremely simple method to improve the intrinsic photoelectrochemical performance of BiVO4 photoanodes.  相似文献   

14.
构建异质结是改善半导体光响应和载流子传输的有效途径之一。采取电喷雾沉积法,在掺氟的二氧化锡玻璃(FTO)上先后制备了WO_(3)和Fe_(2)TiO_(5)纳米结构薄膜,并研究了其作为光阳极的光电催化性能。薄膜表面复杂的微纳米结构有效地增加了对光的捕获能力和化学反应比表面积;二者在界面处形成的异质结有效地抑制了光生载流子的复合,加速了电荷的转移,提升了光电催化水裂解性能。在1.23 V和1.6 V(vs. RHE)处,其光电流密度相比纯Fe_(2)TiO_(5)电极分别提升了1.4和4.6倍。  相似文献   

15.
朱相林  管子涵  王朋  张倩倩  戴瑛  黄柏标 《催化学报》2018,39(10):1704-1710
光催化作为太阳能利用领域的研究热点引起了广泛的关注.其中,光电化学技术能够通过分解水提供清洁的氢能源,因此被认为是一种潜在的新能源制造方式.在光电化学分解水产氢的过程中,最重要的是高效光电极的制备.一系列n型半导体材料已被广泛地报道并用作光阳极,如BiVO4,ZnO,Fe2O3等.然而对于光阴极材料,其可选择性则较少.CuBi2O4是一种天然矿物,具有廉价易得以及化学性质稳定的特性,而且是一种p型半导体材料,因此能够用于制备光阴极;另外因为其强的可见光响应(1.70 eV),所以具有广泛的应用前景.目前对于CuBi2O4光阴极研究主要集中在合成和理论计算方面,而对于如何促进界面处的载流子分离研究较少.本文通过一种简单的电沉积方法成功制备出CuBi2O4光阴极,然后利用非晶TiO2和助催化剂Pt进行修饰后将其用于光电化学产氢.由于形成了CuBi2O4/TiO2 p-n结,因此其光阴极活性得到增强.新的Pt/TiO2/CuBi2O4光阴极在0.60 V偏压处的光电流为0.35 mA/cm2,其数值约为Pt/CuBi2O4光阴极的两倍.XRD结果表明,我们制备的CuBi2O4为纯相且结晶性较好,其表面修饰的TiO2为非晶相的.SEM结果表明,CuBi2O4电极层由100-150 nm的颗粒构成.紫外-可见吸收光谱表明,制备的CuBi2O4光电极拥有良好的可见光吸收性质,而且TiO2修饰未对CuBi2O4的光吸收产生明显的影响.XPS结果表明,修饰TiO2并未对CuBi2O4电极造成成分上的破坏.光电化学测试表明,修饰TiO2层厚度和结晶性会影响光电极的最终活性.修饰四层TiO2和退火200 oC的样品具有最好的活性.另外稳定性测试也表明,修饰非晶TiO2的CuBi2O4光阴极具有良好的稳定性.在IPCE测试中,Pt/TiO2/CuBi2O4光阴极在其光响应范围内均比Pt/CuBi2O4光阴极表现出更高的效率.阻抗结果测试中Pt/TiO2/CuBi2O4光阴极具有更小的阻抗,这表明其载流子传输更加高效.在Mott-Shetty测试中,Pt/TiO2/CuBi2O4和Pt/CuBi2O4光阴极都表现出p型半导体性质,但是Pt/TiO2/CuBi2O4具有更负的平带电位,这表明修饰的TiO2仍具有n型半导体材料的特性,并与p型的CuBi2O4形成p-n结,从而促进了载流子分离效率.  相似文献   

16.
使用金属辅助化学刻蚀(MACE)法与水热法,改变贵金属粒子的刻蚀时间,制备不同n型多孔硅/TiO_2纳米线光阳极。通过扫描电镜(SEM)和X射线衍射仪(XRD)对光阳极样品进行表征,结果显示多孔硅宏孔的尺寸会随着刻蚀时间延长而增大,由0.1μm变化到0.4μm,多孔硅表面长有TiO_2纳米线为金红石相及少量锐钛矿相。测试结果显示刻蚀35 min的多孔硅/TiO_2样品具有最高的减反射率,在模拟太阳光下具有较高的光电流(光电流密度)活性,且在1.5 V外加偏压下具有最高的光电催化活性。这是由于刻蚀35 min的多孔硅基底具有优异的减反射性能,同时多孔硅与Ti O_2纳米线复合形成光阳极之后具有异质结效应和窗口效应,使得多孔硅/TiO_2纳米线光阳极具有优异光电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号