首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
采用第一性原理对3C-SiC块体和3C-SiC(111)、(110)和(100)三个表面的电子结构和光学性质进行理论计算.计算结果表明:3C-SiC块体是带隙为1.44 eV的G-M间接带隙半导体,3C-SiC(111)表面是带隙为2.05 eV的M-G间接带隙半导体,3C-SiC(110)表面形成带隙值为0.87 eV的直接带隙半导体;3C-SiC(100)表面转变为导体.由光学性质分析得到,与3C-SiC块体比较,3C-SiC(100)、(110)、(111)表面的介电函数,吸收谱,反射谱,能量损失函数等均出现红移.  相似文献   

2.
针对三种结构类型的单壁碳纳米管的电子结构和声子谱,采用基于密度泛函理论的第一性原理以及CASTEP软件进行了理论计算.在完成建模和结构优化的基础上,对扶手椅型(10,10)、锯齿型(6,0)和螺旋型(4,2)单壁碳纳米管的电子能带及电子态密度、声子谱及声子态密度进行了理论计算,并对计算结果进行了理论分析.结果表明:(10,10)及(6,0)单壁碳纳米管无能量禁带,它们属于金属型管;而(4,2)单壁碳纳米管有一宽度为0.85 eV的能量禁带,它属于半导体型管.以上计算结果与用其它判据给出的结论相一致.在以上三种管的声子谱中,它们依次有120条、72条和168条(其中有简并情况)色散曲线,并且它们的声子态密度依次在频率41.88 THz、23.95THz和23.43 THz处出现最大值,即在这些频率附近的格波最多.这一计算结果与物理规律是一致的.  相似文献   

3.
采用第一性原理杂化泛函HSE06方法对Fe掺杂α-Bi2 O3的电子结构和光学性质进行了计算研究.结果表明,Fe掺杂α-Bi2 O3体系有较小的结构变形,本征α-Bi2 O3的禁带宽度为2.69 eV,Fe掺杂使α-Bi2 O3的禁带宽度减小(约为2.34 eV).对其光学性质研究得出Fe掺杂扩展了α-Bi2 O3对可...  相似文献   

4.
采用密度泛函理论下的平面波超软赝势方法和杂化泛函理论下的模守恒赝势方法,分别计算了未掺杂ZnO和两种La掺杂浓度的ZnO模型,其中对较高La掺杂浓度的计算还设置了两种不同的掺杂位置.结构优化后,首先通过计算形成能、系统总能量和电荷布居值,对掺杂后体系的稳定性进行了分析;而后结合自旋基态能量与自旋电子态密度对掺杂体系的磁性状态进行了说明;最后通过计算得到的电子结构及吸收光谱讨论了La掺杂量对ZnO光电性能的影响.结果表明:随La掺杂量增加,ZnO体系稳定性有所降低;La掺杂ZnO无磁性,电子结构不会受到自旋能级分裂的影响;与纯ZnO相比,La掺杂ZnO的禁带宽度增大,吸收光谱蓝移,然而通过控制La浓度与掺杂方式可以有效增强La-5d与Zn-4s电子态的交换关联作用而减小ZnO的最小光学带隙,提高ZnO对可见光的吸收系数,使光生空穴-电子对有效分离的影响.  相似文献   

5.
通过基于密度泛函理论的第一性原理计算,研究了Mg单掺杂、N单掺杂和不同浓度的Mg-N共掺杂β-Ga2O3的结构性质、电子性质和光学性质,以期获得性能比较优异的p型β-Ga2O3材料。建立了五种模型:Mg单掺杂、N单掺杂、1个Mg-N共掺杂、2个Mg-N共掺杂和3个Mg-N共掺杂β-Ga2O3。经过计算,3个Mg-N共掺杂β-Ga2O3体系的结构最稳定。此外,在5种模型中,3个Mg-N共掺杂β-Ga2O3体系的禁带宽度是最小的,并且N 2p和Mg 3s贡献的占据态抑制了氧空位的形成,从而增加了空穴浓度。因此,3个Mg-N共掺杂β-Ga2O3体系表现出优异的p型性质。3个Mg-N共掺杂体系的吸收峰出现明显红移,在太阳盲区的光吸收系数较大,这归因于导带Ga 4s、Ga 4p、Mg 3s向价带O 2p、N 2p的带间电子跃迁。本工作将为p型β-Ga2O3日盲光电材料的研究和应用提供理论指导。  相似文献   

6.
采用基于密度泛函理论(DFT)的第一性原理计算方法,计算了Mn4Si7及Mo掺杂Mn4Si7的电子结构和光学性质.计算结果表明Mn4 Si7的禁带宽度Eg=0.804 eV,Mo掺杂Mn4Si7的禁带宽度Eg=0.636 eV.掺杂使得Mn4 Si7费米面附近的电子结构发生改变,导带底由Γ点转移为Y点向低能方向下偏移,价带顶向高能方向上偏移,带隙变窄.计算还表明Mo掺杂Mn4Si7使介电函数、折射率、吸收系数及光电导率等光学性质增加.  相似文献   

7.
采用基于密度泛函理论(DFT)赝势平面波方法计算了ZnS体系Ni掺杂前后的能带结构、态密度和光吸收系数曲线。结果表明:纯ZnS的能带结构是直接带隙,态密度显示属离子性较强而共价键较弱的混合键半导体材料。掺Ni的ZnS禁带宽度随掺杂量增加逐渐减小,能带简并度增大,且向低能方向移动;在价带顶出现杂质能级,说明是p型掺杂。纯ZnS在3.9 eV以下无吸收,红外透过率较高。掺Ni后吸收边红移,且在低能端(绿光区)出现新的吸收峰。  相似文献   

8.
采用基于密度泛函理论的第一性原理计算方法对BiF3的结构、弹性和电子性质进行了研究.计算表明,正交的Pnma结构是零压下的最稳定结构.在0~45 GPa压力区间内,Pnma结构都是力学稳定的.BiF3是脆性材料,有较强的弹性各向异性特征.零压下体模量、剪切模量和杨氏模量分别为27.9 GPa,25.7 GPa和58.9 GPa,泊松比为0.15,德拜温度是244 K.电子性质的研究表明,零压下BiF3的带隙为4.69 eV,随着压强的升高,导带向高能方向移动,价带向低能方向移动.化学键是共价键和离子键的混合.  相似文献   

9.
采用基于密度泛函理论的第一性原理赝势平面波方法,对Co掺杂CrSi2的几何结构、电子结构和光学性质进行了计算与分析.结果表明,掺杂后的CrSi2晶格常数无明显变化,禁带宽度增大.由于Co元素3d电子的影响,在费米能级附近出现了杂质能级.掺杂后的CrSi2复介电函数虚部在低能方向发生红移,在小于1.20 eV,大于2.41 eV的能量范围内光跃迁强度增强.吸收系数的主峰向高能方向移动,峰值增大,在小于1.38 eV,大于3.30 eV的能量范围改善了CrSi2对红外光子的吸收.光电导率的主峰向高能方向移动,在小于1.16 eV,大于2.36 eV的能量范围内光电导率增强,说明掺杂Co元素后改善了CrSi2特别是红外光区的光电性质,计算结果为CrSi2光电器件的研究制造提供了理论依据.  相似文献   

10.
本文基于密度泛函理论第一性原理,系统研究了单层GeC,N掺杂、As掺杂及N-As共掺杂GeC体系的稳定性、电子结构及光学性质等。结果表明,单层GeC是一种禁带宽度为2.10 eV的直接带隙半导体。与单层GeC相比,掺杂后体系的禁带宽度和功函数均减小,表明体系的电子跃迁所需的能量相对较少。并且,掺杂后体系的光吸收系数均有所提高,同时吸收带边也发生了红移,有效拓宽了体系对光的响应范围,提高了体系对光子的吸收能力。此外,As掺杂GeC体系不仅在费米能级附近出现了杂质能级,而且在低能区的吸收系数、静介电函数及消光系数等光学性质最优。本研究可为GeC光电相关实验制备提供理论基础。  相似文献   

11.
采用密度泛函理论计算了Mn掺杂LiNbO3结构的ZnTiO3(LN-ZnTiO3)的磁性和光电性质。计算结果表明Mn掺杂LN-ZnTiO3倾向占据Zn位,形成稳定的3d5电子构型。Mn替代Zn位掺杂可以为LN-ZnTiO3提供较大的局域磁矩,约为5 μB。同时在价带顶附近形成明显的Mn-3d和O-2p轨道的受主能级,降低了材料的带隙,促进可见光的吸收。在LN-ZnTiO3中掺杂Mn可以同时实现较大的局域磁矩和p型半导体的特性,拓展了材料在磁学和可见光吸收领域的应用。  相似文献   

12.
本文基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法计算了z-BC2N和z-B2CN的4种晶体结构的电子结构、硬度和光学性质。结果表明,z-BC2N(2)为直接带隙半导体,其禁带宽度2.449 eV,z-BC2N(1)为间接宽带隙半导体,其禁带宽度为3.381 eV,而z-B2CN(1)和z-B2CN(2)为导体;硬度结果显示z-BC2N(1)、z-BC2N(2)和z-B2CN(1)为超硬材料。最后通过计算z-BC2N基本光学函数与光子能量的关系表征了其光学性质。分析结果表明,z-BC2N结构可以用作良好的耐磨材料和窗口耐热材料。  相似文献   

13.
采用基于广义梯度近似的第一性原理方法,研究了纯ZnO、S单掺、La单掺和S-La共掺ZnO的能带结构、态密度和光学性质.S单掺ZnO后,价带和导带同时向低能量转移,导致带隙减小.La单掺ZnO后在导带底产生杂质能级使得带隙减小.S-La共掺ZnO导致La的局部化减弱,表明La形成的施主能级由于S的3 p态的影响变得更浅...  相似文献   

14.
采用基于密度泛函理论的第一性原理赝势平面波方法,探究了未掺杂Mg2 Si以及Nd掺杂Mg2 Si的能带结构、态密度和光学性质.计算结果表明:Nd掺杂Mg2 Si后,Mg2 Si禁带宽度从0.290 eV降低到0 eV,导电性能提升;未掺杂的Mg2 Si,当光子能量大于0.9 eV时,才开始慢慢具备吸收能力,掺杂Nd之后...  相似文献   

15.
采用基于密度泛函理论的第一性原理赝势平面波方法对Sc、Ce单掺和共掺后CrSi2的几何结构、电子结构、复介电函数、吸收系数和光电导率进行了计算.结果表明:Sc、Ce掺杂CrSi2的晶格常数增大,带隙变小.本征CrSi2的带隙为0.386 eV,Sc、Ce单掺及共掺CrSi2的禁带宽度分别减小至0.245 eV、0.23...  相似文献   

16.
WS2由于其优异的物理和光电性质引起了广泛关注。本研究基于第一性原理计算方法,探索了本征单层WS2及不同浓度W原子替位钇(Y)掺杂WS2的电子结构和光学特性。结果表明本征单层WS2为带隙1.814 eV的直接带隙半导体。进行4%浓度(原子数分数)的Y原子掺杂后,带隙减小为1.508 eV,依旧保持着直接带隙的特性,随着Y掺杂浓度的不断增大,掺杂WS2带隙进一步减小,当浓度达到25%时,能带结构转变为0.658 eV的间接带隙,WS2表现出磁性。适量浓度的掺杂可以提高材料的导电性能,且掺杂浓度增大时,体系依旧保持着透明性并且在红外光和可见光区对光子的吸收能力、材料的介电性能都有着显著提高。本文为WS2二维材料相关光电器件的研究提供了理论依据。  相似文献   

17.
采用第一性原理方法,对本征Mg2Si以及K和Ti掺杂Mg2Si的几何结构、电子结构和光学性质进行计算分析。计算结果表明本征Mg2Si是带隙值为0.290 eV的间接带隙半导体材料,K掺杂Mg2Si后,Mg2Si为p型半导体,电子跃迁方式由间接跃迁变为直接跃迁,Ti掺杂Mg2Si后,Mg2Si为n型半导体,仍然是间接带隙。K、Ti掺杂后的静介电常数ε1(0)从20.52分别增大到53.55、69.25,使得掺杂体系对电荷的束缚能力增强。掺杂后,吸收谱和光电导率均发生红移现象,这有效扩大了对可见光的吸收范围,此外可见光区的吸收系数、反射系数以及光电导率都减小,导致透射能力增强,明显改善了Mg2Si的光学性质。  相似文献   

18.
基于密度泛函理论计算了本征氧化锌、6.25%Mg以及同位、邻位、间位12.5%Mg原子掺杂氧化锌晶体的几何结构、原子轨道电子布居、静电势和电子结构特征;探究了Mg原子掺杂对氧化锌能带结构、态密度以及对应的光学性质和电学性质的影响.结果表明Mg掺杂会导致氧化锌晶体的晶格体积变大,载流子迁移率降低和吸收边蓝移;邻位双原子掺...  相似文献   

19.
邹江  李平  谢泉 《人工晶体学报》2021,50(11):2036-2044
采用基于密度泛函理论的平面波超软赝势方法对纯AlN、(La,Y)单掺杂以及La-Y共掺杂AlN 超胞进行几何结构优化,计算了稀土元素(La,Y)掺杂前后体系的能带结构、态密度和光学性质。结果表明:未掺杂的AlN是直接带隙半导体,带隙值为Eg=4.237 eV,在费米能级附近,态密度主要由Al-3p、N-2s电子轨道贡献电子,光吸收概率大,能量损失较大;掺杂后使得能带结构性质改变,带隙值降低,能带曲线变密集,总态密度整体下移;在光学性质中,稀土元素掺杂后均提高了静态介电常数、光吸收性能,增强了折射率和反射率,减小了电子吸收光子概率及能量损失;其中La-Y共掺体系变化得较为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号