首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张鑫  宋小会  张殿琳 《中国物理 B》2010,19(8):86802-086802
<正>The grain size and surface morphology of sputtered Au films are studied by x-ray diffraction and atomic force microscope.For as-deposited samples the grain growth mechanism is consistent with the two-dimensional(2D) theory, which gives relatively low diffusion coefficient during deposition.The annealing process demonstrates the secondary grain growth mechanism in which the thickness dependence of grain boundary energy plays a key role.The surface roughness increases with the increase of grain size.  相似文献   

2.
Wen Feng  Yinbiao Yan 《哲学杂志》2013,93(13):1057-1070
Abstract

In order to study the dependence of the grain boundary character distributions (GBCD) on the grain size, annealing treatment was carried out on 304 austenitic stainless steel with different initial grain sizes. The evolution of the GBCD was analysed by electron backscatter diffraction. The experimental results showed that abnormal grain growth (AGG) occurred when grain size was small. With a smaller initial grain size, the number density of abnormally large grains and the fraction of low-Σ CSL boundaries increased but the size of abnormally large grains decreased and the random boundaries presented a continuous network. With a larger initial grain size, the fraction of low-Σ CSL boundaries also increased as well as the size of abnormally large grains but the number density of abnormally large grains decreased and the connectivity of random boundary network was disrupted by low-Σ CSL boundaries, especially Σ3n (n = 1, 2, 3) boundaries. However, with a very large initial grain size, normal grain growth (NGG) occurred, which had no effect on the fraction of low-Σ CSL boundaries and the connectivity of random boundary network.  相似文献   

3.
Two mechanisms for deformation-induced grain growth in nanostructured metals have been proposed, including grain rotation-induced grain coalescence and stress-coupled grain boundary (GB) migration. A study is reported in which significant grain growth occurred from an average grain size of 46?nm to 90?nm during high pressure torsion (HPT) of cryomilled nanocrystalline Cu powders. Careful microstructural examination ascertained that grain rotation-induced grain coalescence is mainly responsible for the grain growth during HPT. Furthermore, a grain size dependence of the grain growth mechanisms was uncovered: grain rotation and grain coalescence dominate at nanocrystalline grain sizes, whereas stress-coupled GB migration prevails at ultrafine grain sizes. In addition, detwinning of the preexisting deformation twins was observed during HPT of the cryomilled Cu powders. The mechanism of detwinning for deformation twins was proposed to be similar to that for growth twins.  相似文献   

4.
Current research on grain boundary migration in metals is reviewed. For individual grain boundaries the dependence of grain boundary migration on misorientation and impurity content are addressed. Impurity drag theory, extended to include the interaction of adsorbed impurities in the boundary, reasonably accounts quantitatively for the observed concentration dependence of grain boundary mobility. For the first time an experimental study of triple junction motion is presented. The kinetics are quantitatively discussed in terms of a triple junction mobility. Their impact on the kinetics of microstructure evolution during grain growth is outlined.  相似文献   

5.
The grain boundary diffusion in a binary system which exhibits a grain boundary phase transition is considered in the framework of Fisher's model. The kinetic law of the growth of the grain boundary phase and the distribution of the diffusant near the grain boundary are calculated. The method of determining of the concentration dependence of the grain boundary diffusion coefficient from the experimentally measured penetration profiles of the diffusant along the grain boundaries is suggested. The experimental results on Zn diffusion in Fe(Si) bicrystals, Ni diffusion in Cu bicrystals and grain boundary grooving in Al in the presence of liquid In are discussed in light of the suggested model.  相似文献   

6.
Zinc oxide (ZnO) films have been grown on sapphire by molecular beam epitaxy (MBE), and it is found that the grain size of the ZnO films increased with increasing the growth temperature. Photoluminescence (PL) study shows that the intensity ratio of near-band-edge emission to deep-level-related emission (NBE/DL) of the ZnO is significantly enhanced with increasing the growth temperature, and the dependence of the carrier mobility on the growth temperature shows very similar trend, which implies that there is a community factor that determines the optical and electrical properties of ZnO, and this factor is suggested to be the grain boundary. The results obtained in this paper reveal that by reducing the grain boundaries, ZnO films with high optical and electrical properties may be acquired.  相似文献   

7.
A simple model is developed for the trapping of positrons at grain boundaries. It is shown that there is a linear relationship between any linear annihilation parameter and the inverse grain size. An effective grain boundary width is defined, which depends on the positron diffusion length and on the strength of the grain boundary for positrons. The effect of detrapping on this effective width is also considered. The model is tested by using the experimental results available in the literature.  相似文献   

8.
用溶胶-凝胶法制备了具有不同颗粒尺寸的La2/3Ca1/3MnO3多晶样品,并测量了该系列样品的电阻随温度的变化关系.借助Monte Carlo方法随机生成的无规电阻网络模型,对具有不同颗粒尺寸的La2/3Ca1/3MnO3多晶样品的电阻温度关系进行了模拟,模拟的结果同实验有非常好的一致性,在此基础上就颗粒边界效应对其电输运性质的影响进行了讨论.  相似文献   

9.
The temperature-rate dependences of strain resistance and the mechanisms of grain boundary sliding in Pb polycrystals and Pb-based alloys under active tension were investigated. The activation energy of plastic deformation and grain boundary sliding was determined. The structural mechanisms of grain boundary sliding were studied in a wide temperature range. The conclusion was made that self-consistency of grain boundary sliding and intragranular plastic flow has its origin in rotational deformation modes, with the grain boundary sliding being a primary process. Theoretical analysis of rotational deformation modes involved in grain boundary sliding was performed. It is shown that the dependence of deforming stress on the polycrystal grain size is impossible to describe by one universal Hall-Petch equation.  相似文献   

10.
We report three-dimensional atomistic molecular dynamics studies of grain growth kinetics in nanocrystalline Ni. The results show the grain size increasing linearly with time, contrary to the square root of the time kinetics observed in coarse-grained structures. The average grain boundary energy per unit area decreases simultaneously with the decrease in total grain boundary area associated with grain growth. The average mobility of the boundaries increases as the grain size increases. The results can be explained by a model that considers a size effect in the boundary mobility.  相似文献   

11.
Second-phase particles are used extensively in design of polycrystalline materials to control the grain size. According to Zener’s theory, a distribution of particles creates a pinning pressure on a moving grain boundary. As a result, a limiting grain size is observed, but the effect of pinning on the detail of grain growth kinetics is less known. The influence of the particles on the microstructure occurs in multiple length scales, established by particle radius and the grain size. In this article, we use a meso-scale phase-field model that simulates grain growth in the presence of a uniform pinning pressure. The curvature of the grain boundary network is measured to determine the driving pressure of grain growth in 2D and 3D systems. It was observed that the grain growth continues, even under conditions where the average driving pressure is smaller than the pinning pressure. The limiting grain size is reached when the maximum of driving pressure distribution in the structure is equal to the pinning pressure. This results in a limiting grain size, larger than the one predicted by conventional models, and further analysis shows consistency with experimental observations. A physical model is proposed for the kinetics of grain growth using parameters based on the curvature analysis of the grain boundaries. This model can describe the simulated grain growth kinetics.  相似文献   

12.
A series of molecular dynamics simulations has been carried out to study the mechanical properties of nanocrystalline platinum. The effects of average grain size and temperature on mechanical behaviors are discussed. The simulated uniaxial tensile results indicate the presence of a critical average grain size about 14.1 nm, for which there is an inversion of the conventional Hall-Petch relation at temperature of 300 K. The transition can be explained by a change of dominant deformation mechanism from dislocation motion for average grain size above 14.1 nm to grain boundary sliding for smaller grain size. The Young's modulus shows a linear relationship with the reciprocal of grain size, and the modulus of the grain boundary is about 42% of that of the grain core at 300 K. The parameters of mechanical properties, including Young's modulus, ultimate strength, yield stress and flow stress, decrease with the increase of temperature. It is noteworthy that the critical average grain size for the inversion of the Hall-Petch relation is sensitive to temperature and the Young's modulus has an approximate linear relation with the temperature. The results will accelerate its functional applications of nanocrystalline materials.  相似文献   

13.
We present a model for compressive stress generation during thin film growth in which the driving force is an increase in the surface chemical potential caused by the deposition of atoms from the vapor. The increase in surface chemical potential induces atoms to flow into the grain boundary, creating a compressive stress in the film. We develop kinetic equations to describe the stress evolution and dependence on growth parameters. The model is used to explain measurements of relaxation when growth is terminated and the dependence of the steady-state stress on growth rate.  相似文献   

14.
In this study, the structural and electrical properties of AZO films with different film thickness deposited by r.f. magnetron sputtering were interpreted in relation with film growth process. The result shows that the grain size increases during film growth, which is accompanied by decrease of compressive stress, indicating the enhancement of crystallinity. The relationship between grain size and compressive stress follows the same tendency for the samples regardless of deposition temperature, which implies the strong dependencies between the grain size and the compressive stress. The XPS analysis shows that the defects such as chemisorbed oxygen and segregated Al2O3 cluster at grain boundary are reduced with increase of film thickness or deposition temperature, leading to increase of carrier concentration and mobility. The mobility increase is accompanied by grain size increase and compressive stress reduction, indicating the influences of grain boundary and crystallinity on the mobility.  相似文献   

15.
Grain growth in thin films is usually abnormal, leading not only to an increase in the average grain size, but also to an evolution in the shape of the grain size distribution and to an evolution in the distribution of grain orientations. The latter can be driven by surface, interface or strain energy minimization, depending on film and substrate properties and on deposition conditions, and can lead to different final textures depending on which energy dominates.In semiconductor films, as in other materials, grain growth stagnation coupled with texture-selective driving forces leads to secondary grain growth, the rate of which is higher in thinner films. Self ion-bombardment enhances the rate of pre-stagnation grain growth, and doping of Si with electron donor leads to enhanced pre-stagnation grain growth as well as surface-energy-driven secondary grain growth. The effects of ion-bombardment and dopants on grain growth in Si can be understood in terms of associated increases in point defect concentrations and the effects of point defects on grain boundary mobilities.  相似文献   

16.
Grain Growth During Superplastic Deformation   总被引:2,自引:0,他引:2  
Significant grain growth occurring during superplastic deformation is related to the micro-mechanism of superplastic flow. Observations performed on the deformed surface of superplastically deformed tensile and shear Pb-62%Sn samples and bi-axially formed AA7475 samples directly indicate that cooperative grain boundary sliding, i.e. sliding of grain groups, is accompanied by cooperative grain boundary migration that can result in an enhanced grain growth. Such a long range correlation in migration of sliding grain boundaries is related to movement of grain boundary dislocations having a step associated with its core. Observed correlation between grain size and strain measured in different regions of a superplastically formed Ti-alloy part and alignment of grain boundaries along shear surfaces support coupling of grain boundary sliding and migration. A model of grain growth considering climb of cellular dislocations, topological defects in a grain array, has been expanded to incorporate gliding and mixed cellular dislocations.  相似文献   

17.
P.R. Rios  M.E. Glicksman 《哲学杂志》2015,95(19):2092-2127
Reduction in stored free energy provides the thermodynamic driving force for grain and bubble growth in polycrystals and foams. Evolution of polycrystalline networks exhibit the additional complication that grain growth may be controlled by several kinetic mechanisms through which the decrease in network energy occurs. Polyhedral boundaries, triple junctions (TJs), and quadruple points (QPs) are the geometrically distinct elements of three dimensional networks that follow Plateau’s rules, provided that grain growth is limited by diffusion through, and motion of, cell boundaries. Shvindlerman and co-workers have long recognized the kinetic influences on polycrystalline grain growth of network TJs and QPs. Moreover, the emergence of interesting polycrystalline nanomaterials underscored that TJs can indeed influence grain growth kinetics. Currently there exist few detailed studies concerned either with network distributions of grain size, number of faces per grain, or with ‘grain trajectories’, when grain growth is limited by the motion of its TJs or QPs. By contrast there exist abundant studies of classical grain growth limited by boundary mobility. This study is focused on a topological/geometrical representation of polycrystals to obtain statistical predictions of the grain size and face number distributions, as well as growth ‘trajectories’ during steady-state grain growth. Three limits to grain growth are considered, with grain growth kinetics controlled by boundary, TJ, and QP mobilities.  相似文献   

18.
19.
张杨  宋晓艳  徐文武  张哲旭 《物理学报》2012,61(1):16102-016102
推导出了单相纳米晶合金的晶界过剩体积与晶粒尺寸之间的定量关系, 建立了纳米晶合金的晶界热力学性质随温度和晶粒尺寸发生变化的确定性函数. 针对SmCo7纳米晶合金, 通过纳米晶界热力学函数计算和分析, 研究了单相纳米晶合金的晶粒组织热稳定性. 研究表明, 当纳米晶合金的晶粒尺寸小于对应于体系中晶界自由能最大值的临界晶粒尺寸时, 纳米晶组织处于相对稳定的热力学状态; 当纳米晶粒尺寸达到和超过临界尺寸时, 纳米晶组织将发生热力学失稳, 导致不连续的快速晶粒长大. 利用纳米晶合金热力学理论与元胞自动机算法相耦合的模型对SmCo7纳米晶合金在升温过程中的晶粒长大行为进行了计算机模拟, 模拟结果与纳米晶合金热力学模型的计算预测结果一致, 由此证实了关于纳米晶合金晶粒组织热稳定性的研究结论. 关键词: 纳米晶合金热力学 7纳米晶合金')" href="#">SmCo7纳米晶合金 热稳定性 计算机模拟  相似文献   

20.
Nanograined materials have some unusual properties. To maintain the small size of the grains, grain growth should be avoided. But recently grain growth has been observed under an indenter at liquid-nitrogen temperatures. Such grain growth has never been reported before. How can this happen and how can it be prevented? These questions are answered here using a simple tilt boundary. It is found that high purity and nonequilibrium structure are necessary conditions for mechanical grain growth. The material must be pure enough so that free dislocations are available to move out of the boundary. But the boundary should not be in the lowest-energy state so that extra dislocations are available to be emitted by stress. Based on these conditions, methods can be devised to avoid low temperature grain growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号