首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We perform Monte Carlo simulations for an antiferromagnetic/ferromagnetic core/shell nanoparticle with a doubly inverted structure. We investigate the dependence of the exchange bias field and coercivity on the magnetic dilution of the shell-interface and shell part. It is demonstrated that exchange bias and coercivity can exhibit monotonic or non-monotonic behavior depending on the location of the non-magnetic components. Also, temperature dependence of the exchange bias and coercivity of the system are studied for a particular defect concentration value. Our results provide an alternative way for tunning the magnetic properties of doubly inverted nanoparticles.  相似文献   

2.
A special consideration has been conducted on the dependencies of exchange bias and coercivity on rotatable antiferromagnetic anisotropy with respect to the collinear ferromagnetic anisotropy and field-cooling directions in ellipsoidal core/shell nanoparticles. With increasing the angle between antiferromagnetic and ferromagnetic easy axes, exchange bias field and coercivity both exhibit biaxial symmetries about the ferromagnetic easy and hard axes. Moreover, the variations of the antiferromagnetic anisotropy constant cannot change the trends of these novel behaviors, but only control their occurrences by dominating the coercive field behaviors. This new exchange-biased feature obtained by means of the special nanoparticle shape and the relative angle between anisotropies is of technological importance for maximizing exchange bias, in order to optimize the designs of the involved devices.  相似文献   

3.
The effect of iron oxide nanoparticle addition on the physicochemical properties of the polypyrrole (PPy) was investigated. In the presence of iron oxide nanoparticles, PPy was observed in the form of discrete nanoparticles, not the usual network structure. PPy showed crystalline structure in the nanocomposites and pure PPy formed without iron oxide nanoparticles. PPy exhibited amorphous structure and nanoparticles were completely etched away in the nanocomposites formed with mechanical stirring over a 7-h reaction. The thermal stability of the PPy in the nanocomposites was enhanced under the thermo-gravimetric analysis (TGA). The electrical conductivity of the nanocomposites increased greatly upon the initial addition (20 wt%) of iron oxide nanoparticles. However, a higher nanoparticle loading (50 wt%) decreased the conductivity as a result of the dominance of the insulating iron oxide nanoparticles. Standard four-probe measurements indicated a three-dimensional variable-range-hopping conductivity mechanism. The magnetic properties of the fabricated nanocomposites were dependent on the particle loading. Ultrasonic stirring was observed to have a favorable effect on the protection of iron oxide nanoparticles from dissolution in acid. A tight polymer structure surrounds the magnetic nanoparticles, as compared to a complete loss of the magnetic iron oxide nanoparticles during conventional mechanical stirring for the micron-sized iron oxide particles filled PPy composite fabrication.  相似文献   

4.
A directed magnetic field induced assembly technique was employed to align two phase (h.c.p. + f.c.c.) cobalt nanoparticles in a mechanically robust long wire morphology. Co nanoparticles with an average size of 4.3 nm and saturation magnetization comparable to bulk cobalt were synthesized by borohydride reduction followed by size selection and magnetic field induced assembly. The coercivity of these nanowires was higher than their nanoparticle counterpart due to shape anisotropy. The experimental coercivity values of the nanowires were lower than the predictions of the coherent rotation, fanning and curling models of coercivity due to the preponderance of superparamagnetic particles with zero coercivity.  相似文献   

5.
It is reported a novel method to prepare magnetic core (iron oxide spinels)–shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core–shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Mössbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.  相似文献   

6.
Iron oxide nanoparticles of 8–20 nm in size were investigated as an assembly with biomolecules synthesized in an aqueous solution. The magnetic behavior of the biomolecule–nanoparticles assembly depends sensitively on the morphology and hence the distribution of the nanoparticles, where the dipole coupling between the nanoparticles governs the overall magnetic behavior. In assemblies of iron oxide nanoparticles with trypsin, we observe a formation of unusual self-alignment of nanoparticles within trypsin molecules. In such an assembly structure, the magnetic particles tend to exhibit a lower spin-glass transition temperature than as-synthesized bare iron oxide nanoparticles probably due to reduced interparticle couplings within the molecular matrix. The observed self-alignment of nanoparticles in biomolecules may be a useful approach for directed nanoparticles assembly.  相似文献   

7.
Aqueous colloidal suspension of iron oxide nanoparticles has been synthesized. Z-potential of iron oxide nanoparticles stabilized by citric acid was −35±3 mV. Iron oxide nanoparticles have been characterized by the light scattering method and transmission electron microscopy. The polyelectrolyte/iron oxide nanoparticle thin films with different numbers of iron oxide nanoparticle layers have been prepared on the surface of silicon substrates via the layer-by-layer assembly technique. The physical properties and chemical composition of nanocomposite thin films have been studied by atomic force microscopy, magnetic force microscopy, magnetization measurements, Raman spectroscopy. Using the analysis of experimental data it was established, that the magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers, the size of iron oxide nanoparticle aggregates, the distance between aggregates, and the chemical composition of iron oxide nanoparticles embedded into the nanocomposite films. The magnetic permeability of nanocomposite coatings has been calculated. The magnetic permeability values depend on the number of iron oxide nanoparticle layers in nanocomposite film.  相似文献   

8.
Magnetic nanoparticle systems are characterized by several competing effects like anisotropy, an inherent disorder, the long range dipolar and the short range exchange interactions due to clustering effects. The sensitivity of the observed static and dynamical properties of these systems like the blocking temperature, the hysteresis and the susceptibility, to the methods of preparation, annealing and the resulting morphology is a manifestation of this. However, given the complexity of the system, it is often difficult to isolate the effects which might be dominant in a particular sample, which has a direct bearing on the desired applications. In this paper we report the effects of anisotropy, interactions and particle concentration on the temperature dependent remanence and coercivity through a numerical simulation on an array of single domain magnetic particles which incorporates all the above mentioned factors. Our results show that it is possible to distinguish between purely anisotropic systems and interacting systems with these measurements. In confirmation of our simulation results we also present the experimental results on the remanence and coercivity of nanomagnetic nickel ferrite composites.  相似文献   

9.
The interaction effects in magnetic nanoparticle system were studied through a Monte Carlo simulation. The results of simulations were compared with two different magnetic systems, namely, iron oxide polymer nanocomposites prepared by polymerization over core and nanocrystalline cobalt ferrite thin films prepared by sol-gel process. The size of the particles in the nanocomposites were estimated to be ∼15 nm with very little agglomeration. The low values of the coercivity obtained from the hysteresis measurements performed confirm that the system is superparamagnetic. SEM studies showed the cobalt ferrite films to have a nanocrystalline character, with particle sizes in the nanometer range. Hysteresis measurements performed on the thin films coated on silicon do not give evidence of the superparamagnetic transition up to room temperature and the coercivity is found to increase with decreasing film thickness. Comparison with simulations indicate that the nanocomposites behave like a strongly interacting array where exchange interactions lead to high blocking temperatures, whereas the films are representative of a semi-infinite array of magnetic clusters with weak interactions and thickness-dependent magnetic properties.  相似文献   

10.
Transmission electron microscopy, X-ray diffraction and Mössbauer spectroscopy were used in the characterization of a nanocomposite containing magnetic nanoparticles dispersed in a glycolic acid-based template. Maghemite nanoparticles were identified as the iron oxide phase dispersed in the polymeric template. From the low-temperature Mössbauer data the amount of the iron-based, non-magnetic material at the nanoparticle surface was estimated as roughly one monolayer in thickness.  相似文献   

11.
Elliptical and stadium-shaped nanoparticles as a function of their geometry have been investigated using numerical simulations. The effect of the shape anisotropy of the particles on coercivity and remanence together with the angular dependence of the remanence and coercivity are addressed. Our results demonstrate that the stadium-shaped particles have many of the outstanding properties of elliptical particles, but also have unique properties, such that the coercivity and remanence remain stable for a wide range of geometry parameters, and exhibit a peculiar angular dependence in the coercivity. These properties suggest that they can be useful for applications in the area of magnetic recording systems.  相似文献   

12.
A serial of FePtNi nanoparticles were investigated on their crystal structure and magnetic properties. The FePtNi nanoparticles were synthesized simultaneously by the reduction of iron (III) acetylacetonate, platinum (II) acetylacetonate and nickel (II) acetylacetonate with 1,2-hexadecanediol as the reducing agent. The X-ray diffraction patterns indicate that the addition of 8, 12, 17 at% Ni in FePt nanoparticles suppressed the transformation of the particles from disorder face-centered cubic to order face-centered tetragonal L10-phase under annealing treatment. However, further increasing Ni contents to 21 at%, the nanoparticle transformed to L12 phase. Doping of Ni into the FePt compound system may decrease coercivity and crystal anisotropy energy. A maximum coercivity of 7 KOe at room temperature was obtained for (Fe52Pt48)92Ni8 nanoparticles after annealing at 600 °C for 30 min.  相似文献   

13.
Iron oxide (α-phase) nanoparticles with coercivity larger than 300 Oe have been fabricated at a mild temperature by an environmentally benign method. The economic sodium chloride has been found to effectively serve as a solid spacer to disperse the iron precursor and to prevent the nanoparticles from agglomeration. Higher ratios of sodium chloride to iron nitrate result in smaller nanoparticles (19 nm for 20:1 and 14 nm for 50:1). The presence of polyvinyl alcohol (PVA) limits the particle growth (15 nm for 20:1 and 13 nm for 50:1) and favors nanoparticle dispersion in polymer matrices. Obvious physicochemical property changes have been observed with PVA attached to the nanoparticle surface. With PVA attached to the nanoparticle surface, the nanoparticles are found not only to increase the PVA cross-linking with an increase in melting temperature but also to enhance the thermal stability of the PVA. The nanoparticles are observed to be uniformly dispersed in the polymer matrix. Scanning electron microscopy (SEM) microstructure also shows an intermediate phase with a strong interaction between the nanoparticles and the polymer matrices, arising from the hydrogen bonding between the PVA and hydroxyl groups on the nanoparticle surface. The addition of nanoparticles favors the cross-linkage of the bulk PVA matrices, resulting in a higher melting temperature, and an enhanced thermal stability of the polymer matrix.  相似文献   

14.
We present the synthesis, microstructural and magnetic characterization of cubic CoO nanoparticles with well-controlled size and shape. The as-synthesized CoO nanoparticles are stable because of the organic coating that occurred in situ. The Néel temperature is 225 and 280 K for the 42 and 74 nm CoO particles, respectively. The CoO nanoparticles exhibit anomalous magnetic properties, such as large moments, coercivities and loop shifts. These results provide evidence for the formation of spin compensated random system in CoO. The structurally distorted and magnetically disordered surface layer ferromagnetic phase played an important role in the magnetic behavior of CoO nanoparticles. The smaller is the particle size, the stronger is the contribution of the ferromagnetic phase and the more is the surface layer helpful to enhance the observed coercivity and the exchange bias.  相似文献   

15.
Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.  相似文献   

16.
Using the classical Heisenberg model and Monte Carlo simulation, we compute the magnetization behavior of a ferromagnetic nanoparticle with an egg-shape in an external magnetic field along the symmetry axis. The particle is in a single-domain state with a surface anisotropy axis perpendicular to the surface of the particle. At low temperature, it is found that exchange bias appears in the hysteresis loop, which does not exist in the spherical and ellipsoidal nanoparticles. The bias field produced by the frozen spins on the surface of the egg-shaped nanoparticle may be the reason to produce the phenomenon of the exchange bias.  相似文献   

17.
Magnetic properties of glucose coated cuprous oxide nanoparticles of different sizes have been studied. Unlike bulk Cu2O, which shows diamagnetic behavior, the nanoparticles show superparamagnetic behavior. A superparamagnetic blocking temperature of 21 K is observed for 5 nm particles. A magnetic hysteresis loop with a coercivity of 406 Oe is observed for these particles at 5 K. The magnetization and the coercivity increase with decreasing particle size. The superparamagnetic behavior, along with the increase in magnetization and coercivity with decreasing particle size, is due to the enhanced surface contributions to the magnetism.  相似文献   

18.
The iron granular solid, in which ultrafine iron particles are dispersed, has been prepared with both SiO2 and Cu matrices using the sol-gel method. The structure and morphology of these granular solid samples are investigated by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The magnetic properties are measured using a vibrating sample magnetometer with 20 kOe maximum applied field. It is found that the coereivity decreases very slightly with temperature from 80 to 300 K for these Fe–SiO2 and Fe–Cu granular solid samples with different average size of iron particles from 50 to 300 Å. The magnetic anisotropy has been obtained from the measured magnetization curves for these granular solid samples using the law of approach to saturation, and the obtained values of the effective magnetic anisotropy are all more than 106 erg/cm3, which are larger than the value of the magnetocrystalline anisotropy for bulk iron. The coercivity vs temperature for these granular solid samples has been calculated using the Kneller and Luborsky theory, in which the magnetic anisotropy values obtained from the law of approach to saturation are used. The trends of the calculated coercivity as a function of temperature are in reasonable agreement with the observations.  相似文献   

19.
Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles’ easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.  相似文献   

20.
胡经国 《计算物理》2004,21(2):166-172
讨论了铁磁-反铁磁双层膜中交换偏置和矫顽场随温度变化的关系。在本模型中,温度的依赖性来源于系统态的热激发以及相关磁学参量的温度依赖性。数值结果显示:低温下,交换偏置和矫顽场随温度的升高而减少,但是随着界面的交换耦合的增强或铁磁层各向异性的减少,其交换偏置变得平坦。随着温度的升高,交换偏置减少直至零;而矫顽场却达到峰值后再减为零。这些结果与实验结果定性一致。根据数值计算结果,可以预见软的铁磁层耦合上硬的反铁磁层,在恰当的交换耦合强度下,可构建具有大的交换偏置、小矫顽场;并在某温度区几乎不随温度变化的磁存贮器件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号