首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Let \(B\) be an \(n\times n\) real expanding matrix and \(\mathcal {D}\) be a finite subset of \(\mathbb {R}^n\) with \(0\in \mathcal {D}\) . The self-affine set \(K=K(B,\mathcal {D})\) is the unique compact set satisfying the set-valued equation \(BK=\bigcup _{d\in \mathcal {D}}(K+d)\) . In the case where \(\#\mathcal D=|\det B|,\) we relate the Lebesgue measure of \(K(B,\mathcal {D})\) to the upper Beurling density of the associated measure \(\mu =\lim _{s\rightarrow \infty }\sum _{\ell _0, \ldots ,\ell _{s-1}\in \mathcal {D}}\delta _{\ell _0+B\ell _1+\cdots +B^{s-1}\ell _{s-1}}.\) If, on the other hand, \(\#\mathcal D<|\det B|\) and \(B\) is a similarity matrix, we relate the Hausdorff measure \(\mathcal {H}^s(K)\) , where \(s\) is the similarity dimension of \(K\) , to a corresponding notion of upper density for the measure \(\mu \) .  相似文献   

2.
We prove some uniform and pointwise gradient estimates for the Dirichlet and the Neumann evolution operators \(G_{\mathcal {D}}(t,s)\) and \(G_{\mathcal {N}}(t,s)\) associated with a class of nonautonomous elliptic operators (t) with unbounded coefficients defined in I× \(\mathbb{R}_{+}\) (where I is a right-halfline or I=?). We also prove the existence and the uniqueness of a tight evolution system of measures \(\left \{\mu _{t}^{\mathcal {N}}\right \}_{t \in I}\) associated with \(G_{\mathcal {N}}(t,s)\) , which turns out to be sub-invariant for \(G_{\mathcal {D}}(t,s)\) , and we study the asymptotic behaviour of the evolution operators \(G_{\mathcal {D}}(t,s)\) and \(G_{\mathcal {N}}(t,s)\) in the L p -spaces related to the system \(\left \{\mu _{t}^{\mathcal {N}}\right \}_{t \in I}\) .  相似文献   

3.
Marian Nowak 《Positivity》2014,18(2):359-373
Let \(X\) be a completely regular Hausdorff space and \(C_b(X)\) be the Banach lattice of all real-valued bounded continuous functions on \(X\) , endowed with the strict topologies \(\beta _\sigma ,\) \(\beta _\tau \) and \(\beta _t\) . Let \(\mathcal{L}_{\beta _z,\xi }(C_b(X),E)\) \((z=\sigma ,\tau ,t)\) stand for the space of all \((\beta _z,\xi )\) -continuous linear operators from \(C_b(X)\) to a locally convex Hausdorff space \((E,\xi ),\) provided with the topology \(\mathcal{T}_s\) of simple convergence. We characterize relative \(\mathcal{T}_s\) -compactness in \(\mathcal{L}_{\beta _z,\xi }(C_b(X),E)\) in terms of the representing Baire vector measures. It is shown that if \((E,\xi )\) is sequentially complete, then the spaces \((\mathcal{L}_{\beta _z,\xi }(C_b(X),E),\mathcal{T}_s)\) are sequentially complete whenever \(z=\sigma \) ; \(z=\tau \) and \(X\) is paracompact; \(z=t\) and \(X\) is paracompact and ?ech complete. Moreover, a Dieudonné–Grothendieck type theorem for operators on \(C_b(X)\) is given.  相似文献   

4.
An operator \(T\) on a complex Hilbert space \(\mathcal {H}\) is called skew symmetric if \(T\) can be represented as a skew symmetric matrix relative to some orthonormal basis for \(\mathcal {H}\) . In this paper, we study the approximation of skew symmetric operators and provide a \(C^*\) -algebra approach to skew symmetric operators. We classify up to approximate unitary equivalence those skew symmetric operators \(T\in \mathcal {B(H)}\) satisfying \(C^*(T)\cap \mathcal {K(H)}=\{0\}\) . This is used to characterize when a unilateral weighted shift with nonzero weights is approximately unitarily equivalent to a skew symmetric operator.  相似文献   

5.
For a domain \(\varOmega \) in \(\mathbb {C}\) and an operator \(T\) in \({\mathcal {B}}_n(\varOmega )\) , Cowen and Douglas construct a Hermitian holomorphic vector bundle \(E_T\) over \(\varOmega \) corresponding to \(T\) . The Hermitian holomorphic vector bundle \(E_T\) is obtained as a pull-back of the tautological bundle \(S(n,{\mathcal {H}})\) defined over \({\mathcal {G}}r(n,{\mathcal {H}})\) by a nondegenerate holomorphic map \(z\mapsto {\mathrm{ker}}(T-z),\;z\in \varOmega \) . To find the answer to the converse, Cowen and Douglas studied the jet bundle in their foundational paper. The computations in this paper for the curvature of the jet bundle are rather intricate. They have given a set of invariants to determine if two rank \(n\) Hermitian holomorphic vector bundle are equivalent. These invariants are complicated and not easy to compute. It is natural to expect that the equivalence of Hermitian holomorphic jet bundles should be easier to characterize. In fact, in the case of the Hermitian holomorphic jet bundle \({\mathcal {J}}_k({\mathcal {L}}_f)\) , we have shown that the curvature of the line bundle \({\mathcal {L}}_f\) completely determines the class of \({\mathcal {J}}_k({\mathcal {L}}_f)\) . In case of rank \(n\) Hermitian holomorphic vector bundle \(E_f\) , We have calculated the curvature of jet bundle \({\mathcal {J}}_k(E_f)\) and also obtained a trace formula for jet bundle \({\mathcal {J}}_k(E_f)\) .  相似文献   

6.
Let \(X\) and \(Y\) be Banach spaces, \(n\in \mathbb {N}\) , and \(B^n(X,Y)\) the space of bounded \(n\) -linear maps from \(X\times \ldots \times X\) ( \(n\) -times) into \(Y\) . The concept of hyperreflexivity has already been defined for subspaces of \(B(X,Y)\) , where \(X\) and \(Y\) are Banach spaces. We extend this concept to the subspaces of \(B^n(X,Y)\) , taking into account its \(n\) -linear structure. We then investigate when \(\mathcal {Z}^n(A,X)\) , the space of all bounded \(n\) -cocycles from a Banach algebra \(A\) into a Banach \(A\) -bimodule \(X\) , is hyperreflexive. Our approach is based on defining two notions related to a Banach algebra, namely the strong property \((\mathbb {B})\) and bounded local units, and then applying them to find uniform criterions under which \(\mathcal {Z}^n(A,X)\) is hyperreflexive. We also demonstrate that these criterions are satisfied in variety of examples including large classes of C \(^*\) -algebras and group algebras and thereby providing various examples of hyperreflexive \(n\) -cocyle spaces. One advantage of our approach is that not only we obtain the hyperreflexivity for bounded \(n\) -cocycle spaces in different cases but also our results generalize the earlier ones on the hyperreflexivity of bounded derivation spaces, i.e. when \(n=1\) , in the literature. Finally, we investigate the hereditary properties of the strong property \((\mathbb {B})\) and b.l.u. This allows us to come with more examples of bounded \(n\) -cocycle spaces which are hyperreflexive.  相似文献   

7.
Let \({\mathcal {A}}\subseteq {\mathbb {N}}^n\) be a finite set, and \(K\subseteq {\mathbb {R}}^n\) be a compact semialgebraic set. An \({\mathcal {A}}\) -truncated multisequence ( \({\mathcal {A}}\) -tms) is a vector \(y=(y_{\alpha })\) indexed by elements in \({\mathcal {A}}\) . The \({\mathcal {A}}\) -truncated \(K\) -moment problem ( \({\mathcal {A}}\) -TKMP) concerns whether or not a given \({\mathcal {A}}\) -tms \(y\) admits a \(K\) -measure \(\mu \) , i.e., \(\mu \) is a nonnegative Borel measure supported in \(K\) such that \(y_\alpha = \int _K x^\alpha \mathtt {d}\mu \) for all \(\alpha \in {\mathcal {A}}\) . This paper proposes a numerical algorithm for solving \({\mathcal {A}}\) -TKMPs. It aims at finding a flat extension of \(y\) by solving a hierarchy of semidefinite relaxations \(\{(\mathtt {SDR})_k\}_{k=1}^\infty \) for a moment optimization problem, whose objective \(R\) is generated in a certain randomized way. If \(y\) admits no \(K\) -measures and \({\mathbb {R}}[x]_{{\mathcal {A}}}\) is \(K\) -full (there exists \(p \in {\mathbb {R}}[x]_{{\mathcal {A}}}\) that is positive on \(K\) ), then \((\mathtt {SDR})_k\) is infeasible for all \(k\) big enough, which gives a certificate for the nonexistence of representing measures. If \(y\) admits a \(K\) -measure, then for almost all generated \(R\) , this algorithm has the following properties: i) we can asymptotically get a flat extension of \(y\) by solving the hierarchy \(\{(\mathtt {SDR})_k\}_{k=1}^\infty \) ; ii) under a general condition that is almost sufficient and necessary, we can get a flat extension of \(y\) by solving \((\mathtt {SDR})_k\) for some \(k\) ; iii) the obtained flat extensions admit a \(r\) -atomic \(K\) -measure with \(r\le |{\mathcal {A}}|\) . The decomposition problems for completely positive matrices and sums of even powers of real linear forms, and the standard truncated \(K\) -moment problems, are special cases of \({\mathcal {A}}\) -TKMPs. They can be solved numerically by this algorithm.  相似文献   

8.
Let \(M\) and \(N\) be two connected smooth manifolds, where \(M\) is compact and oriented and \(N\) is Riemannian. Let \(\mathcal {E}\) be the Fréchet manifold of all embeddings of \(M\) in \(N\) , endowed with the canonical weak Riemannian metric. Let \(\sim \) be the equivalence relation on \(\mathcal {E}\) defined by \(f\sim g\) if and only if \(f=g\circ \phi \) for some orientation preserving diffeomorphism \(\phi \) of \(M\) . The Fréchet manifold \(\mathcal {S}= \mathcal {E}/_{\sim }\) of equivalence classes, which may be thought of as the set of submanifolds of \(N\) diffeomorphic to \(M\) and is called the nonlinear Grassmannian (or Chow manifold) of \(N\) of type \(M\) , inherits from \( \mathcal {E}\) a weak Riemannian structure. We consider the following particular case: \(N\) is a compact irreducible symmetric space and \(M\) is a reflective submanifold of \(N\) (that is, a connected component of the set of fixed points of an involutive isometry of \( N\) ). Let \(\mathcal {C}\) be the set of submanifolds of \(N\) which are congruent to \(M\) . We prove that the natural inclusion of \(\mathcal {C}\) in \(\mathcal {S}\) is totally geodesic.  相似文献   

9.
Let \(A\) and \(B\) be two points of \(\mathrm{{PG}}(2,q^n)\) , and let \(\Phi \) be a collineation between the pencils of lines with vertices \(A\) and \(B\) . In this paper, we prove that the set of points of intersection of corresponding lines under \(\Phi \) is either the union of a scattered \(\mathrm{{GF}}(q)\) -linear set of rank \(n+1\) with the line \(AB\) or the union of \(q-1\) scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n\) with \(A\) and \(B\) . We also determine the intersection configurations of two scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n+1\) of \(\mathrm{{PG}}(2,q^n)\) both meeting the line \(AB\) in a \(\mathrm{{GF}}(q)\) -linear set of pseudoregulus type with transversal points \(A\) and \(B\) .  相似文献   

10.
We study the uniqueness of generalized \(p\) -minimal surfaces in the Heisenberg group. The generalized \(p\) -area of a graph defined by \(u\) reads \(\int |\nabla u+\vec {F}|+Hu.\) If \(u\) and \(v\) are two minimizers for the generalized \(p\) -area satisfying the same Dirichlet boundary condition, then we can only get \(N_{\vec {F}}(u) = N_{\vec {F}}(v)\) (on the nonsingular set) where \(N_{\vec {F}}(w) := \frac{\nabla w+\vec {F}}{|\nabla w+\vec {F}|}.\) To conclude \(u = v\) (or \(\nabla u = \nabla v)\) , it is not straightforward as in the Riemannian case, but requires some special argument in general. In this paper, we prove that \(N_{\vec {F}}(u) = N_{ \vec {F}}(v)\) implies \(\nabla u = \nabla v\) in dimension \(\ge \) 3 under some rank condition on derivatives of \(\vec {F}\) or the nonintegrability condition of contact form associated to \(u\) or \(v\) . Note that in dimension 2 ( \(n=1),\) the above statement is no longer true. Inspired by an equation for the horizontal normal \(N_{\vec {F}}(u),\) we study the integrability for a unit vector to be the horizontal normal of a graph. We find a Codazzi-like equation together with this equation to form an integrability condition.  相似文献   

11.
The Johnson graph \(J(v,k)\) has, as vertices, the \(k\) -subsets of a \(v\) -set \(\mathcal {V}\) and as edges the pairs of \(k\) -subsets with intersection of size \(k-1\) . We introduce the notion of a neighbour-transitive code in \(J(v,k)\) . This is a proper vertex subset \(\Gamma \) such that the subgroup \(G\) of graph automorphisms leaving \(\Gamma \) invariant is transitive on both the set \(\Gamma \) of ‘codewords’ and also the set of ‘neighbours’ of \(\Gamma \) , which are the non-codewords joined by an edge to some codeword. We classify all examples where the group \(G\) is a subgroup of the symmetric group \(\mathrm{Sym}\,(\mathcal {V})\) and is intransitive or imprimitive on the underlying \(v\) -set \(\mathcal {V}\) . In the remaining case where \(G\le \mathrm{Sym}\,(\mathcal {V})\) and \(G\) is primitive on \(\mathcal {V}\) , we prove that, provided distinct codewords are at distance at least \(3\) , then \(G\) is \(2\) -transitive on \(\mathcal {V}\) . We examine many of the infinite families of finite \(2\) -transitive permutation groups and construct surprisingly rich families of examples of neighbour-transitive codes. A major unresolved case remains.  相似文献   

12.
Let X be a finite or infinite chain and let \({\mathcal{O}}(X)\) be the monoid of all endomorphisms of X. In this paper, we describe the largest regular subsemigroup of \({\mathcal{O}}(X)\) and Green’s relations on \({\mathcal{O}}(X)\) . In fact, more generally, if Y is a nonempty subset of X and \({\mathcal{O}}(X,Y)\) is the subsemigroup of \({\mathcal{O}}(X)\) of all elements with range contained in Y, we characterize the largest regular subsemigroup of \({\mathcal{O}}(X,Y)\) and Green’s relations on \({\mathcal{O}}(X,Y)\) . Moreover, for finite chains, we determine when two semigroups of the type \({\mathcal {O}}(X,Y)\) are isomorphic and calculate their ranks.  相似文献   

13.
This paper is devoted to the study of the Hausdorff dimension of the singular set of the minimum time function \(T\) under controllability conditions which do not imply the Lipschitz continuity of \(T\) . We consider first the case of normal linear control systems with constant coefficients in \({\mathbb {R}}^N\) . We characterize points around which \(T\) is not Lipschitz as those which can be reached from the origin by an optimal trajectory (of the reversed dynamics) with vanishing minimized Hamiltonian. Linearity permits an explicit representation of such set, that we call \(\mathcal {S}\) . Furthermore, we show that \(\mathcal {S}\) is countably \(\mathcal {H}^{N-1}\) -rectifiable with positive \(\mathcal {H}^{N-1}\) -measure. Second, we consider a class of control-affine planar nonlinear systems satisfying a second order controllability condition: we characterize the set \(\mathcal {S}\) in a neighborhood of the origin in a similar way and prove the \(\mathcal {H}^1\) -rectifiability of \(\mathcal {S}\) and that \(\mathcal {H}^1(\mathcal {S})>0\) . In both cases, \(T\) is known to have epigraph with positive reach, hence to be a locally \(BV\) function (see Colombo et al.: SIAM J Control Optim 44:2285–2299, 2006; Colombo and Nguyen.: Math Control Relat 3: 51–82, 2013). Since the Cantor part of \(DT\) must be concentrated in \(\mathcal {S}\) , our analysis yields that \(T\) is locally \(SBV\) , i.e., the Cantor part of \(DT\) vanishes. Our results imply also that \(T\) is differentiable outside a \(\mathcal {H}^{N-1}\) -rectifiable set. With small changes, our results are valid also in the case of multiple control input.  相似文献   

14.
Let \({\mathcal {C}}\) be two times continuously differentiable curve in \({\mathbb {R}}^2\) with at least one point at which the curvature is non-zero. For any \(i,j \geqslant 0\) with \(i+j =1\) , let \({\mathbf {Bad}}(i,j)\) denote the set of points \((x,y) \in {\mathbb {R}}^2\) for which \( \max \{ \Vert qx\Vert ^{1/i}, \, \Vert qy\Vert ^{1/j} \} > c/q \) for all \( q \in {\mathbb {N}}\) . Here \(c = c(x,y)\) is a positive constant. Our main result implies that any finite intersection of such sets with \({\mathcal {C}}\) has full Hausdorff dimension. This provides a solution to a problem of Davenport dating back to the sixties.  相似文献   

15.
In this paper the author considers the problem of how large the Hausdorff dimension of \(E\subset \mathbb {R}^d\) needs to be in order to ensure that the radii set of \((d-1)\) -dimensional spheres determined by \(E\) has positive Lebesgue measure. The author also studies the question of how often can a neighborhood of a given radius repeat. There are two results obtained in this paper. First, by applying a general mechanism developed in Grafakos et al. (2013) for studying Falconer-type problems, the author proves that a neighborhood of a given radius cannot repeat more often than the statistical bound if \(\dim _{{\mathcal H}}(E)>d-1+\frac{1}{d}\) ; In \(\mathbb {R}^2\) , the dimensional threshold is sharp. Second, by proving an intersection theorem, the author proves that for a.e \(a\in \mathbb {R}^d\) , the radii set of \((d-1)\) -spheres with center \(a\) determined by \(E\) must have positive Lebesgue measure if \(\dim _{{\mathcal H}}(E)>d-1\) , which is a sharp bound for this problem.  相似文献   

16.
Closed operators in Hilbert space defined by a non-self-adjoint resolution of the identity \(\{X(\lambda )\}_{\lambda \in {\mathbb R}}\) , whose adjoints constitute also a resolution of the identity, are studied. In particular, it is shown that a closed operator \(B\) has a spectral representation analogous to the familiar one for self-adjoint operators if and only if \(B=\textit{TAT}^{-1}\) where \(A\) is self-adjoint and \(T\) is a bounded inverse.  相似文献   

17.
This article studies commutative orders, that is, commutative semigroups having a semigroup of quotients. In a commutative order \(S\) , the square-cancellable elements \(\mathcal {S}(S)\) constitute a well-behaved separable subsemigroup. Indeed, \(\mathcal {S}(S)\) is also an order and has a maximum semigroup of quotients \(R\) , which is Clifford. We present a new characterisation of commutative orders in terms of semilattice decompositions of \(\mathcal {S}(S)\) and families of ideals of \(S\) . We investigate the role of tensor products in constructing quotients, and show that all semigroups of quotients of \(S\) are homomorphic images of the tensor product \(R\otimes _{\mathcal {S}(S)} S\) . By introducing the notions of generalised order and semigroup of generalised quotients, we show that if \(S\) has a semigroup of generalised quotients, then it has a greatest one. For this we determine those semilattice congruences on \(\mathcal {S}(S)\) that are restrictions of congruences on \(S\) .  相似文献   

18.
A pair \((P, Q)\) of orthogonal projections in a Hilbert space \( \mathcal{H} \) is called a Fredholm pair if $$\begin{aligned} QP : R(P) \rightarrow R(Q) \end{aligned}$$ is a Fredholm operator. Let \( \mathcal{F} \) be the set of all Fredholm pairs. A pair is called compact if \(P-Q\) is compact. Let \( \mathcal{C} \) be the set of all compact pairs. Clearly \( \mathcal{C} \subset \mathcal{F} \) properly. In this paper it is shown that both sets are differentiable manifolds, whose connected components are parametrized by the Fredholm index. In the process, pairs \(P, Q\) that can be joined by a geodesic (or equivalently, a minimal geodesic) of the Grassmannian of \( \mathcal{H} \) are characterized: this happens if and only if $$\begin{aligned} \dim (R(P)\cap N(Q))=\dim (R(Q)\cap N(P)). \end{aligned}$$   相似文献   

19.
In this paper, we characterize the Lebesgue Bochner spaces \(L^p({\mathbb{R }}^{n},B),\, 1 , by using Littlewood–Paley \(g\) -functions in the Hermite setting, provided that \(B\) is a UMD Banach space. We use \(\gamma \) -radonifying operators \(\gamma (H,B)\) where \(H=L^2((0,\infty ),\frac{\mathrm{d}t}{t})\) . We also characterize the UMD Banach spaces in terms of \(L^p({\mathbb{R }}^{n},B)-L^p({\mathbb{R }}^{n},\gamma (H,B))\) boundedness of Hermite Littlewood–Paley \(g\) -functions.  相似文献   

20.
Let \(\mathcal{A}\) be a representation finite algebra over finite field k such that the indecomposable \(\mathcal{A}\) -modules are determined by their dimension vectors and for each \(M, L \in ind(\mathcal{A})\) and \(N\in mod(\mathcal{A})\) , either \(F^{M}_{N L}=0\) or \(F^{M}_{L N}=0\) . We show that \(\mathcal{A}\) has Hall polynomials and the rational extension of its Ringel–Hall algebra equals the rational extension of its composition algebra. This result extend and unify some known results about Hall polynomials. As a consequence we show that if \(\mathcal{A}\) is a representation finite simply-connected algebra, or finite dimensional k-algebra such that there are no short cycles in \(mod(\mathcal{A})\) , or representation finite cluster tilted algebra, then \(\mathcal{A}\) has Hall polynomials and \(\mathcal{H}(\mathcal{A})\otimes_\mathbb{Z}Q=\mathcal{C}(\mathcal{A})\otimes_\mathbb{Z}Q\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号