首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ZnO crystals can be grown from alkaline aqueous solution not only by the standard hydrothermal technique at temperatures between 350 °C and 400 °C, but also by chemical bath deposition (CBD) at temperatures below 100 °C. In the presence of ZnO and ScAlMgO4 (SCAM) substrates almost all ZnO deposits on the substrate, with different habits, however. Under optimized conditions even homoepitaxial layers can be obtained, while rod-like structures are obtained on SCAM substrates. The chemistry and the driving forces behind the two processes are considered in detail and the temperature dependence of the solution composition has been calculated. The driving force for the ZnO crystal growth in the standard hydrothermal technique is the difference in the ZnO solubility in alkaline solutions at different temperatures. In contrast, the driving force for the chemical bath deposition of ZnO at low temperatures is the decay of zinc ion complex molecules with increasing temperature.  相似文献   

2.
Preferential growth of pure single-walled carbon nanotubes (SWNTs) over multi-walled carbon nanotubes (MWNTs) was demonstrated at low temperature by water plasma chemical vapor deposition. Water plasma lowered the growth temperature down to 450 degrees C, and the grown nanotubes were single-walled without carbonaceous impurities and MWNTs. The preferential growth of pure SWNTs over MWNTs was proven with micro-Raman spectroscopy, high-resolution transmission electron microscopy, and electrical characterization of the grown nanotube networks.  相似文献   

3.
The ZnO nanorod growth mechanism during liquid-phase deposition (LPD) has been investigated, with results considered in the context of phase stabilization, LPD chemical processes, and Gibbs free energy and entropy. Zinc oxide (ZnO) possesses unique optical and electronic properties, and obtaining ZnO species with high specific surface area is important in ZnO applications. Highly c-axis-oriented ZnO films are expected to be utilized in future optical and electrical devices. ZnO nanorods were synthesized using an aqueous solution deposition technique on a glass substrate with a free-standing ZnO nanoparticle layer. ZnO nanorod growth was easily controlled on the nanoscale by adjustment of the immersion time (15-210 min). X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), and film thickness measurements were used to characterize the crystalline phase, orientation, morphology, microstructure, and growth mechanism of the ZnO nanorods. FE-SEM images were analyzed by image processing software, which revealed details of the of ZnO nanorod growth mechanism.  相似文献   

4.
Formation of CdS quantum dots (Q dots) on the vertically aligned ZnO nanorods electrode was carried out by chemical bath deposition. The diameter and thickness of ZnO nanorods are ~100–150 nm and ~1.6 μm, respectively, and CdS Q dots on ZnO nanorods have a diameter of smaller than 15 nm. In application of the Q dots-sensitized solar cells, composite film exhibited a power conversion efficiency of 0.54% under air mass 1.5 condition (80 mW/cm2), and incident-photon-to-current conversion efficiency showed 18.6%.  相似文献   

5.
6.
7.
化学水浴沉积法制备CdSe薄膜   总被引:1,自引:0,他引:1  
CdSe是直接跃迁宽带隙的II-VI族化合物半导体,具有立方和六方两种结构,以及与太阳谱中可见光波段相适宜的带宽(<1.7ev),是制作异质结太阳电池和光电化学太阳电池的重要原料[1,2].  相似文献   

8.
Nano-structured CuS thin films were deposited on the functionalized -NH(2)-terminated self-assembled monolayers (SAMs) surface by chemical bath deposition (CBD). The deposition mechanism of CuS on the -NH(2)-terminated group was systematically investigated using field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscope (XPS), UV-vis absorption. The optical, electrical and photoelectrochemical performance of CuS thin films incorporating with the X-ray diffraction (XRD) analysis confirmed the nanocrystalline nature of CuS with hexagonal crystal structure and also revealed that CuS thin film is a p-type semiconductor with high electrical conductivity (12.3Ω/□). The functionalized SAMs terminal group plays a key role in the deposition of CuS thin films. The growth of CuS on the varying SAMs surface shows different deposition mechanisms. On -NH(2)-terminated surfaces, a combination of ion-by-ion growth and cluster-by-cluster deposition can interpret the observed behavior. On -OH- and -CH(3)-terminated surfaces, the dominant growth mechanism on the surface is cluster-by-cluster deposition in the solution. According to this principle, the patterned CuS microarrays with different feature sizes were successfully deposited on -NH(2)-terminated SAMs regions of -NH(2)/-CH(3) patterned SAMs surface.  相似文献   

9.
A simple method of microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate cadmium sulfide (CdS) thin films. The superhydrophobic surface with a water contact angle (CA) of 151 degrees was obtained. Via a scanning electron microscopy (SEM) observation, the film was proved having a porous micro/nano-binary structure which can change the property of the surface and highly enhance the hydrophobicity of the film. A possible mechanism was suggested to describe the growth of the porous structure, in which the microwave heating takes an important role in the formation of two distinct characteristic dimensions of CdS precipitates, the growth of CdS sheets in micro-scale and sphere particles in nano-scale. The superhydrophobic films may provide novel platforms for photovoltaic, sensor, microfluidic and other device applications.  相似文献   

10.
A low-temperature solution-phase method has been demonstrated for the synthesis of uniform nanorods of Bi2S3 with diameter of 18 nm and length of below 200 nm. Transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction (XRD) studies revealed that these nanorods were grown from a colloidal dispersion of amorphous Bi2S3 particles, which was first formed through a thermal reaction between Bi-thiol complexes Bi(SC12)3 and thioacetamide (TAA) in a pure dodecanethiol (C12SH) solvent at a temperature of 95 °C. Based on these studies, the growth mechanism of Bi2S3 nanorods was properly proposed.  相似文献   

11.
ZnS thin films were prepared by an improved chemical bath deposition method, which the substrates were preheated before being mounted in the reaction solution. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) reveals that thin film ZnS has a cubic structure and the typical composition ratio of Zn/S is 52:48. Scanning electron microscopy (SEM) characterization shows that the surface of the sample is compact and uniform. The transmission spectrum indicates a good transmission characteristic with an average transmittance of 82.2% in the spectra range from 350 nm to 800 nm and the optical band gap is about 3.76 eV.  相似文献   

12.
CdS semiconductor nano-films were grown on ITO glass substrates by means of chemical bath deposition (CBD), with Cd(NO3)2 as Cd ion and (NH2)2CS as S ion sources. The concentration of Cd ions, deposition temperature, deposition time and post-treatment temperature have an impact on the formation of CdS nano-films. UV-vis absorption spectrum and atomic force microscope (AFM) images indicated that the change of concentration and post-treatment temperature may adjust the band-gap of CdS to obtain stable, homogeneous and compact films. Formation mechanism of the crystal nucleus and CdS film was also discussed. Active sites on the surface of ITO are critical to the formation of the crystal nucleus and a uniform and compact CdS nano-film. The active site and crystal nucleus are formed due to the comprehensive effect of electricity, thermodynamics and chemistry. __________ Translated from Journal of Jilin University (Science Edition), 2007, 45(1): 116–120 [译自: 吉林大学学报(自然科学版)]  相似文献   

13.
We report on a flexible quantum dot-sensitized solar cell (QDSSC) based on ZnO nanorods with a length of 2 μm. Due to the good coverage of CdSe QDs on ZnO by the electrophoretic deposition method, a maximum power conversion efficiency of ~1% is achieved for the flexible QDSSC.  相似文献   

14.
A highly porous cobalt oxide thin film was prepared on ITO glass by a facile chemical bath deposition (CBD) method. The as-prepared cobalt oxide film has an intercrossing net-like morphology. The electrochromic performance of cobalt oxide film was investigated in 0.1 M KOH by means of transmittance, cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The cobalt oxide thin film exhibits a noticeable electrochromism with reversible color changes from pale yellow to dark grey and presents a transmittance variation with 36% in the visible range. The porous cobalt oxide thin film also shows good reaction kinetics with fast switching speed, and the coloration and bleaching time are 2.5 and 2 s, respectively.  相似文献   

15.
Epitaxial chemical deposition of ZnO nanocolumns from NaOH solutions   总被引:3,自引:0,他引:3  
A new method of depositing expitaxial ZnO nanocolumns on sputter-coated ZnO substrates is described that utilizes supersaturated zincate species in sodium hydroxide solutions and requires no complexing agents. Uniform arrays of columns are grown reproducibly over entire substrates in 10-50 min. Columns are 50-2000 nm long and 50-100 nm wide. Strict substrate cleaning and/or preparation was not necessary with this method, in contrast to many other techniques, probably because the high pH generates a reproducible surface. The interfacial properties of the substrate are critical to lowering the activation energy for columnar growth; therefore films grow only on substrates precoated with ZnO, not on bare glass or ITO- or SnO2-coated glass. Factors affecting the column growth are elucidated, and experimental observations are correlated with crystal growth theory.  相似文献   

16.
Khan SB  Faisal M  Rahman MM  Jamal A 《Talanta》2011,85(2):943-949
Well-crystalline ZnO nanoparticles (NPs) were synthesized in large-quantity via simple hydrothermal process using the aqueous mixtures of zinc chloride and ammonium hydroxide. The detailed structural properties were examined using X-ray diffraction pattern (XRD) and field emission scanning electron microscope (FESEM) which revealed that the synthesized NPs are well-crystalline and possessing wurtzite hexagonal phase. The NPs are almost spherical shape with the average diameters of ∼50 ± 10 nm. The quality and composition of the synthesized NPs were obtained using Fourier transform infrared (FTIR) and electron dispersed spectroscopy (EDS) which confirmed that the obtained NPs are pure ZnO and made with almost 1:1 stoichiometry of zinc and oxygen, respectively. The optical properties of ZnO NPs were investigated by UV-vis absorption spectroscopy. Synthesized ZnO NPs were extensively applied as a photocatalyst for the degradation of acridine orange (AO) and as a chemi-sensor for the electrochemical sensing of acetone in liquid phase. Almost complete degradation of AO has taken place after 80 min of irradiation time. The fabricated acetone sensor based on ZnO NPs exhibits good sensitivity (∼0.14065 μA cm−2 mM−1) with lower detection limit (0.068 ± 0.01 mM) in short response time (10 s).  相似文献   

17.
Chemical bath deposition (CBD) is an inexpensive and reproducible method for depositing ZnO nanowire arrays over large areas. The aqueous Zn(NO(3))(2)-hexamethylenetetramine (HMTA) chemistry is one of the most common CBD chemistries for ZnO nanowire synthesis, but some details of the reaction mechanism are still not well-understood. Here, we report the use of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to study HMTA adsorption from aqueous solutions onto ZnO nanoparticle films and show that HMTA does not adsorb on ZnO. This result refutes earlier claims that the anisotropic morphology arises from HMTA adsorbing onto and capping the ZnO {10 1 0} faces. We conclude that the role of HMTA in the CBD of ZnO nanowires is only to control the saturation index of ZnO. Furthermore, we demonstrate the first deposition of ZnO nanowire arrays at 90 °C and near-neutral pH conditions without HMTA. Nanowires were grown using the pH buffer 2-(N-morpholino)ethanesulfonic acid (MES) and continuous titratation with KOH to maintain the same pH conditions where growth with HMTA occurs. This semi-batch synthetic method opens many new opportunities to tailor the ZnO morphology and properties by independently controlling temperature and pH.  相似文献   

18.
Semiconductor nanorod arrays on a substrate have a preferential alignment orientation that minimizes the excessive free energy of the system. In the case of wet chemically synthesized zinc oxide (ZnO) nanorod on the amorphous surfaces, the thermodynamic driving force determines the orientation to be normal to the surface. Among the various kinds of amorphous surfaces, the spherical seed layer composed of ZnO precursors gives isotropic radially aligned arrays. For other surfaces, such as wrinkled and planar ZnO precursor thin film, nanorod arrays are aligned to be perpendicular to the tangential line of the surface. The maximum value of the aspect ratio of the nanorod is determined by the thermodynamic relationship. The number density of nanorods per unit precursor particles decreases with increasing contact angle of the seed particles.  相似文献   

19.
CdS thin films have been deposited onto FTO/glass substrates by two different techniques, electrochemical deposition (ECD) and chemical bath deposition (CBD). Feasibility of using these two film types in photoelectrochemical processes has been critically investigated here. The films were comparatively characterized by a number of techniques (solid state absorption spectra, solid state photoluminescence spectra, XRD and SEM). PEC characteristics of the electrodes, including current density–voltage (JV) plots, conversion efficiency (η), stability and fill-factor (FF) were then studied. The results show that both systems involved nano-sized CdS particles living in coagulates. The ECD was thinner and more uniform than the CBD system. The CBD films were more effective in PEC processes than the ECD counterparts. Effect of annealing on characteristics of both electrode systems has been investigated. Annealing enhanced both film characteristics, but the CBD was affected to a higher extent, and the annealed CBD film was more effective than the ECD counterpart.  相似文献   

20.
Free-standing copper nanowires were synthesized by a chemical vapor deposition process at low substrate temperatures using Cu(etac)[P(OEt)3]2 as a precursor. The process requires neither templates nor catalysts to produce copper nanowires of 70-100 nm in diameter, which exhibited high purity and crystallinity with [111] orientation. The grain structures of the films deposited from a series of Cu(I) alkyl 3-oxobutanoate complexes indicated that the high precursor stability was responsible for the columnar growth of the grains, which was evolved to the nanowires eventually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号