首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microchimica Acta - Gold nanoparticles (AuNP) were deposited on the surface of multiwalled carbon nanotubes (MWCNT) by in-situ thermal decomposition of gold acetate under solvent and reducing agent...  相似文献   

2.
A glassy carbon electrode modified with palladium nanoparticles decorated multiwalled carbon nanotubes (GCE/nanoPd-MWCNTs) was fabricated. Incorporation of palladium nanoparticles onto the carbon nantube surface by thermal decomposition of palladium acetate led to the fabrication of a sensor with a significant decrease in hydrazine electrooxidation potential. The sensor exhibited low detection limits, high sensitivity and selectivity, rapid response, and good stability toward hydrazine detection.  相似文献   

3.
DFT (B3LY/6-31G (d, p) and B3LYP/cc-PVDZ) calculations are performed for deoxidized dopamine (DA(R)) and its oxidized form (DA(O)). The electrochemistry of dopamine (DA) was studied by cyclic voltammetry (CV) at a glassy carbon electrode modified by Nafion multiwalled carbon nanotubes (MWNTs) in phosphate buffers at pH 5.4, showing that the standard electrode potential of a half reaction for DA(O), H+/DA(R) is 0.74 V. This experimental standard electrode potential of the half reaction is consistent with those of 0.65 and 0.69 V calculated using the energies of solvation and the sum of the electronic and thermal free energies of DA(R) and DA(O). The frontier orbital theory and Mulliken charges of molecules explain the electrochemical behavior of CV at a modified electrode well. The effects of oxygen on DA(R) in blood and drug are also discussed according to equilibrium theory. The modified electrode was successful for determination of the content of pharmaceutical DA. The text was submitted by the authors in English.  相似文献   

4.
We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodíc current is linearly related to the concentration of the phenols between 0.4???M and 10???M, and the detection limit is 0.2???M. The method was applied to the determination of phenol in water samples.
Figure
A tyrosinase and carbon nanotubes (MWNTs) modified glassy carbon electrode was fabricated and used for the sensitive detection of phenol. The reduction peak of benzoquinone produced by enzymatic reaction of phenol was greatly enhanced due to the presence of MWNTs(c)  相似文献   

5.
We report on an electrode for the amperometric determination of lorazepam. A glassy carbon electrode was coated with a molecular imprint made by electropolymerization of ortho-phenylenediamine and filled with multiwalled carbon nanotubes and gold nanoparticles, which enhances the transmission of electrons. The sensor was studied with respect to its response to hexacyanoferrate (III) as a probe and by electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry. The linear response range to Lorazepam is from 0.5 nM to 1.0 nM and from 1.0 nM to 10.0 nM, with a detection limit of 0.2 nM (at an S/N of 3). The electrode was successfully applied to determine Lorazepam in spiked human serum.
Figure 1
The preparation of schematic of the AuNP/MIP/f?MWCNT/GCE electrode  相似文献   

6.
This study reports a detailed analysis of an electrode material containing poly(phenolphthalein), carbon nanotubes and gold nanoparticles which shows superior catalytic effect towards to hydrazine oxidation in Britton–Robinson buffer (pH 10.0). Glassy carbon electrode was modified by electropolymerization of phenolphthalein (PP) monomer (poly(PP)/GCE) and the multiwalled carbon nanotubes (MWCNTs) was dropped on the surface. This modified surface was electrodeposited with gold nanoparticles (AuNPs/CNT/poly(PP)/GCE). The fabricated electrode was analysed the determination of hydrazine using cyclic voltammetry, linear sweep voltammetry and amperometry. The peak potential of hydrazine oxidation on bare GCE, poly(PP)/GCE, CNT/GCE, CNT/poly(PP)/GCE, and AuNPs/CNT/poly(PP)/GCE were observed at 596 mV, 342 mV, 320 mV, 313 mV, and 27 mV, respectively. A shift in the overpotential to more negative direction and an enhancement in the peak current indicated that the AuNPs/CNT/poly(PP)/GC electrode presented an efficient electrocatalytic activity toward oxidation of hydrazine. Modified electrodes were characterized with High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Amperometric current responses in the low hydrazine concentration range of 0.25–13 µM at the AuNPs/CNT/poly(PP)/GCE. The limit of detection (LOD) value was obtained to be 0.083 µM. A modified electrode was applied to naturel samples for hydrazine determination.  相似文献   

7.
The voltammetric behaviour of two anthraquinone dyes such as Alizarin Red S (ARS) and Reactive blue 4 (RB4) was investigated at plain glassy carbon electrode (GCE), multiwalled carbon nano tube modified GCE (MWCNT/GCE) and zeolite modified GCE (ZE/GCE) using cyclic voltammetry. Effects of pH, scan rate and concentration were studied. The surface morphology of the modified electrode in the absence and presence of dye molecules was characterized by scanning electron microscopy (SEM). A systematic study on the variation of experimental parameters with differential pulse stripping voltammetry (DPSV) was carried out and the optimized experimental conditions were arrived. MWCNT/GCE performed well among the three electrode systems and the limit of detection (LOD) was 0.036?µg?mL?1 for ARS and 0.05?µg?mL?1 for RB4 on this modified system. Suitability of the differential pulse stripping voltammetric method for the trace determination of textile dyes in effluents was also realized.  相似文献   

8.
A nanocomposite consisting of polyaniline and multiwalled carbon nanotubes was tethered with a thiolated thrombin-specific aptamer and placed on a glassy carbon electrode (GCE) to obtain a biosensor for thrombin that has a limit of detection of 80 fM. Tethering was accomplished via a thiol-ene reaction between thiolated thrombin aptamer (TTA) and oxidized polyaniline (PANI) that was chemically synthesized in the presence of solution-dispersed multiwalled carbon nanotubes (MWCNTs). The modified GCE exhibits a pair of well-defined redox peaks (at 50/?25 mV) of self-doped PANI in neutral solution, and the tethered TTA-thrombin interaction gives a decreased electrochemical signal. Cyclic voltammetry, scanning electron microscopy and ultraviolet visible spectroscopy were used to characterize the film properties. This amperometric aptasensor is sensitive, selective and reproducible. It was applied to the determination of thrombin in spiked human serum (0.2 to 4 nM) and gave recoveries that ranged from 95 to 102%.
Graphical abstract A nanocomposite consisting of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs) was tethered with a thiolated thrombin aptamer (TTA) and placed on a glassy carbon electrode (GCE) to obtain a biosensor for thrombin that has a 80 f. detection limit.
  相似文献   

9.
A sensitive and accurate method for determining five sulfonamides based on HPLC with amperometric detection and using a glassy carbon electrode modified with multiwalled carbon nanotubes is proposed. Optimal conditions for the quantitative separation of selected sulfonamides were studied, and glassy carbon electrodes with and without modification with carbon nanotubes were systematically investigated as electrodic materials. Statistical analysis of the obtained results demonstrated that these modified electrodes achieved considerably better stability and sensitivity than the conventional unmodified ones. Detection limits were in the 1.2–6.0 ng/mL range. The usefulness of the method was demonstrated by the analysis of milk samples, taking into account the European legislation on residues in food products, following both a screening method to classify the samples and a confirmation method to provide more detailed information in the case of positive samples.  相似文献   

10.
The voltammetric method for simultaneous determination of some disinfectants at glassy carbon electrode modified with multiwalled carbon nanotubes is presented. The examined compounds are: 2-phenylphenol, 4-chloro-3-methylphenol, triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol and 2-mercaptobenzothiazole. The measurements has been performed using cyclic voltammetry and differential pulse voltammetry in Britton-Robinson buffers as supporting electrolytes. The modification of electrode surface with multiwalled carbon nanotubes enhances the peak current. It is possible to measure mixtures of two compounds (2-phenylphenol and 2-mercaptobenzothiazole, 4-chloro-3-methylphenol and 2-mercaptobenzothiazole, triclosan and 2-mercaptobenzothiazole) in the solution of pH 9.9, which provides the best separation of oxidation peaks.  相似文献   

11.
A novel glassy carbon electrode (GCE) modified with a composite film of poly (4-vinylpyridine) (P4VP) and multiwalled carbon nanotubes (P4VP/MWCNT GCE) was used for the voltammetric determination of paracetamol (PCT). This novel electrode displayed a combined effect of P4VP and MWCNT on the electro-oxidation of PCT in a solution of phosphate buffer at pH 7. Hence, conducting properties of P4VP along with the remarkable physical properties of MWCNTs might have combined effects in enhancing the kinetics of PCT oxidation. The P4VP/MWCNT GCE has also demonstrated excellent electrochemical activity toward PCT oxidation compared to that with bare GCE and MWCNT GCE. The anodic peak currents of PCT on the P4VP/MWCNT GCE were about 300 fold higher than that of the non-modified electrodes. By applying differential pulse voltammetry technique under optimized experimental conditions, a good linear ratio of oxidation peak currents and concentrations of PCT over the range of 0.02–450 μM with a limit of detection of 1.69 nM were achieved. This novel electrode was stable for more than 60 days and reproducible responses were obtained at 99% of the initial current of PCT without any influence of physiologically common interferences such as ascorbic acid and uric acid. The application of this electrode to determine PCT in tablets and urine samples was proposed.  相似文献   

12.
The quantification of methyldopa in pharmaceuticals has been carried out using a glassy carbon electrode(GCE) modified with multi-walled carbon nanotubes(MWCNTs). Methyldopa exhibited a quasi-reversible response with a peak potential separation of 473 m V on a bare GCE. However, the cyclic voltammetric behaviour of methyldopa was improved with the increase of the amount of MWCNTs. It was also shown that the electrocatalytic activity of the electrode towards the response of methyldopa was higher with larger amount of film on the surface. The results showed that the peak current was proportional to the concentration of methyldopa with a linear dynamic range of 0.005–0.388 mmol/L and a detection limit of 1.0 nmol/L was obtained using square wave voltammetry. The experimental data showed that the detection limit of methyldopa and peak separation from interfering compounds such as ascorbic acid(AA) and uric acid(UA) were improved using the proposed procedure. The method was successfully applied for the determination of methyldopa in pharmaceuticals.  相似文献   

13.
S Zheng  Y Huang  G Chen 《The Analyst》2012,137(18):4335-4342
A sensitive electrochemical sensor based on immobilized multiwalled carbon nanotubes (MWCNTs) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM·PF(6)) on a glassy carbon electrode (GCE) for o-sec-butylphenol (osBP) was proposed. The electro-oxidation behavior was studied, the experimental conditions were optimized and kinetic parameters were calculated. The results indicated that this electrochemical sensor has the advantages of fast electron-transfer rate, minimal fouling of electrodes, high sensitivity and stability for o-sec-butylphenol. Upon comparison with a glassy carbon electrode, this senor would effectively minimize the over-potential and increase the electrochemical response to o-sec-butylphenol. Under the optimum conditions, the peak current was linear to the osBP concentration range from 1 × 10(-7) to 2.5 × 10(-5) M with the detection limit of 8.65 × 10(-9) M (S/N = 3). The proposed method was applied to the determination of spiked water samples with satisfactory results.  相似文献   

14.
15.
A novel electrochemical platform was designed and prepared for simultaneous determination of p-acetaminophen (AMP) and p-aminophenol (AP) by combining the excellent conductivity and electrocatalytic activities of tetraaminophenyl porphyrin functionalized multi-walled carbon nanotubes (CNTs-CONH-TAPP) and gold nanoparticles (AuNPs). The as-synthesized CNTs-CONH-TAPP composites were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscope. The incisive oxidation current responses of AMP and AP at the modified electrode promised a sensitive and selective simultaneous determination of AMP and AP. Under optimized conditions, the peak currents were directly proportional to the concentrations of AMP and AP over the ranges of 4.5–500 μmol L−1 and 0.08–60 μmol L−1, respectively, and the limits of detection were 0.44 μmol L−1 for AMP and 0.025 μmol L−1 for AP(S/N = 3) respectively. The proposed modified electrode showed excellent selectivity, reproducibility and long-term stability and could be applied in simultaneous determination of p-acetaminophen and p-aminophenol in real samples.  相似文献   

16.
An electrochemical method based on a single-wall carbon nanotubes (SWNTs) film-coated glassy carbon electrode (GCE) was described for the determination of tinidazole. In a 0.1 M Britton-Robinson buffer with a pH of 10.0, tinidazole yields a very sensitive and well-defined reduction peak at -0.78 V (vs. SCE) on a SWNTs-modified GCE. Compared with that on a bare GCE, the reduction peak of tinidazole increases significantly on the modified GCE. Thus, all of the experimental parameters were optimized and a sensitive voltammetric method is proposed for tinidazole determination. It is found that the reduction peak current is proportional to the concentration of tinidazole over the range from 5 x 10(-8) to 4 x 10(-5) M, and that the detection limit is 1 x 10(-8) M at 3 min open-circuit accumulation. This new analysis method was demonstrated with tinidazole drugs.  相似文献   

17.
A novel glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on Ag nanoparticles-decorated multiwalled carbon nanotube (AgNP-MWNT) modified glass carbon electrode (GCE). The AgNP-MWNT composite membrane showed an improving biocompatibility for GOx immobilization and an enhancing electrocatalytic activity toward reduction of oxygen due to decoration of AgNPs on MWNT surfaces. The AgNPs also accelerated the direct electron transfer between redox-active site of GOx and GCE surface because of their excellent conductivity and large capacity for protein loading, leading to direct electrochemistry of GOx. The glucose biosensor of this work showed a lower limit of detection of 0.01 mM (S/N?=?3) and a wide linear range from 0.025 to 1.0 mM, indicating an excellent analytical performance of the obtained biosensor to glucose detection. The resulting biosensor exhibits good stability and excellent reproducibility. Such bionanocomposite provides us good candidate material for fabrication of biosensors based on direct electrochemistry of immobilized enzymes.  相似文献   

18.
A new soluble multiwalled carbon nanotubes (MWNTs) covalently functionalized with conjugated polymer PCBF, in which the wt % of MWNTs is approximately calculated as 7.3%, and the average thickness of PCBF covalently grafted onto MWNTs is 10.4 nm, was synthesized by an amidation reaction. In contrast to the starting polymer PCBF‐NH2, grafting of PCBF onto MWNTs led to a 0.3 eV red‐shift of the N1s XPS peak at 399.7 eV assigning to N in the unreacted NH2moieties in the resulting copolymer structure and an appearance of new peak at 402 eV corresponding to N bound to the carbonyl C (i.e., NH? C?O). Unlike PCBF‐NH2, which only displayed a weak optical limiting response at 532 nm, Z‐scan for MWNT‐PCBF exhibited a much broader reduction in transmission and a scattering accompanying on the focus of the lens at both 532 and 1064 nm, indicating a prominent broadband optical limiting response. The thermally induced nonlinear scattering is responsible for the optical limiting. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
磺胺类抗菌药是一类允许在饲料中添加的兽用广谱抗菌药.它被广泛用于治疗家畜呼吸道、消化道细菌感染、猪萎缩性鼻炎、禽霍乱、伤寒等疾病[1].停药期用药或用药不当将导致动物食品中抗菌药残留超标.人们长期食用含磺胺类抗菌药残留超标的动物产品,将导致肝肾损伤和体内耐药菌株产生,危害到人们的身体健康和疾病治疗.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号