首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CPT-11 (I; 7-ethyl-10-[4-(1-piperidino)-1- piperidino]carbonyloxycamptothecin) is a new anticancer agent currently under clinical development. A sensitive high-performance liquid chromatographic assay suitable for the simultaneous determination of I and its active metabolite SN-38 (II) in human plasma, and their preliminary clinical pharmacokinetics, are described. Plasma samples were processed using a solid-phase (C18) extraction step allowing mean recoveries of I, II and the internal standard camptothecin (III) of 84, 99 and 72%, respectively. The extracts were chromatographed on a C18 reversed-phase column with a mobile phase composed of acetonitrile, phosphate buffer and heptanesulphonic acid, with fluorescence detection. The calibration graphs were linear over a wide range of concentrations (1 ng/ml-10 micrograms/ml), and the lower limit of determination was 1 ng/ml for both I and II. The method showed good precision: the within-day relative standard deviation (R.S.D.) (5-1000 ng/ml) was 13.0% (range 4.9-19.4%) for I and 12.8% (6.7-19.1%) for II; the between-day R.S.D. (5-10,000 ng/ml was 7.9% (5.4-17.5%) for I and 9.7% (3.5-15.1%) for II. Using this assay, plasma pharmacokinetics of both I and II were simultaneously determined in three patients receiving 100 mg/m2 I as a 30-min intravenous infusion. The mean peak plasma concentration of I at the end of the intravenous infusion was 2400 +/- 285 ng/ml (mean +/- standard error of the mean). Plasma decay was triphasic with half-lives alpha, beta and gamma of 5.4 +/- 1.8 min, 2.5 +/- 0.5 h and 20.2 +/- 4.6 h, respectively. The volume of distribution at steady state was 105 +/- 15 l/m2, and the total body clearance was 12.5 +/- 1.9 l/h.m2. The maximum concentrations of the active metabolite II reached 36 +/- 11 ng/ml.  相似文献   

2.
A simple and sensitive assay for glucuronidation activity of 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan (CPT-11), in human liver microsomes by high-performance liquid chromatography (HPLC) with fluorescence detection is reported. The method was validated for the determination of SN-38 glucuronide (SN-38G) with respect to specificity, linearity, recovery, stability, precision, accuracy, and limits of detection and quantitation. There was no interference from matrix and non-enzymatic reactions. The calibration curve for SN-38G was linear from 5 to 500 nM. Average recoveries ranged from 98 to 100% in spiked human liver microsome samples, and the SN-38G was stable at 4 degrees C for at least 72 h. The newly developed method was found to be more sensitive and selective than previous methods using thin layer chromatography and HPLC. The limit of quantitation for SN-38G was 5 nM (2.5 pmol/assay). The intra- and inter-day precision and accuracy were less than 7 and 4%, respectively. The intra- and inter-day precision of enzyme assay for UDP-glucuronosyltransferase (UGT) activity toward SN-38 in human liver microsomes was less than 4%. With this improved sensitivity, the kinetics of SN-38 glucuronidation in human liver microsomes could be determined more precisely. Therefore, this method is applicable to in vitro study on the side effects and drug interactions of CPT-11 using small amounts of biological sample.  相似文献   

3.
4.
5.
Summary A sensitive liquid chromatographic assay for the quantitative determination of the opioid analgesic tramadol and its active metabolite is described. Fluconazole was used as internal standard. The assay involved a singletert-butyl methyl ether extraction and LC analysis with fluorescence detection. Chromatography was at 30°C pumping an isocratic mobile phase of acetonitrile-water (19∶81, v/v) containing 0.06M NaH2PO4 and 0.05M triethylamine, adjusted to pH 7.90, at 1 mL min−1 through a reversed-phase, 250×4 mm base-stable column. The limit of quantitation of tramadol and its active metabolite was 1 ng mL−1, only 0.5 mL plasma sample was required for the determination. The calibration curve was linear from 1–1000 ng mL−1. Intra and inter-day precision (C.V.) did not exceed 10%. Mean recoveries of 96.38% for tramadol and 96.62% forO-demethyltramadol with CVs of 0.43% and 1.46% were obtained. Applicability of the method was demonstrated by a pharmacokinetic study on normal volunteers who received 100 mg tramadol intravenously.  相似文献   

6.
Treatment through a combination of drugs involving cyclin D-dependent kinase inhibitors like abemaciclib and aromatase inhibitor like letrozole proved to be a potential therapeutic regimen and first-line treatment in estrogen receptor-positive breast cancer. In this study, we developed a simple and simultaneous RP-HPLC bioanalytical method for quantifying abemaciclib and letrozole in rat plasma. Abemaciclib and letrozole were separated on Zorbax Eclipse C18 column employing a gradient elution method comprising 10 mM ammonium acetate (pH 5) and acetonitrile as mobile phase. The method was found to have acceptable selectivity, accuracy (97.20–118.17%), precision (1.10–9.39%) and stability in the validation experiment performed as per the US Food and Drug Administration guidelines. The method sensitivity was low at a concentration level of 100 ng/ml. The applicability of the method has been verified through a single-dose oral pharmacokinetic study in rat. The developed method will be useful to quantitate the analytes in rat plasma samples of different preclinical studies including their pharmacokinetic drug–drug interactions in the future. To date, no method has been reported for the quantification of abemaciclib and letrozole simultaneously in any type of biological matrices. Therefore, this study makes a definite significant contribution in the field of bioanalytical research.  相似文献   

7.
An analytical method based on high-performance liquid chromatographic (HPLC) with ultraviolet (UV) detection was developed for determination of scopolin in rat plasma using aesculin as internal standard (IS). After protein precipitation of plasma sample with methanol, the supernatant was directly injected and analyzed. Chromatographic separation was achieved on a C18 column using methanol and distilled water (22:78, v/v) containing 0.2% (v/v) glacial acetic acid as mobile phase with a column temperature of 30 degrees C. The UV detector was set at 338 nm. The calibration curve was linear over the range of 0.105-13.125 microg/mL with a correlation coefficient of 0.9998. The retention times of aesculin and scopolin were 10.4 and 12.8 min, respectively. The recoveries for plasma samples of 0.105, 4.725 and 13.125 microg/mL were 91.08, 95.30 and 96.10%, respectively. The RSD of intra- and inter-day assay variations was less than 7.35%. The lower limit of detection was 0.03 microg/mL .This HPLC assay is a simple, sensitive and accurate and was successfully applied to the pharmacokinetic study of scopolin in rats.  相似文献   

8.
9.
A sensitive, rapid and specific method for the simultaneous quantification of oxysophocarpine (OSC) and its active metabolite sophocarpine (SC) in rat plasma was developed and validated, using a liquid-liquid extraction procedure followed by liquid chromatography/electrospray ionization mass spectrometric (LC/ESI-MS) analysis. The separation was performed on a Zorbax Extend-C(18) column (2.1 mm i.d. x 50 mm, 5 microm) with a C(18) guard column using methanol-water containing 5 mm ammonium acetate (15:85, v/v) as mobile phase. Analysis was performed in selected ion monitoring (SIM) mode with an electrospray ionization (ESI) interface. [M + H](+) at m/z 263 for OSC, [M + H](+) at m/z 247 for SC and [M + H](+) at m/z 249 for matrine (internal standard) were selected as detecting ions, respectively. The method was linear in the concentration ranges 10-1000 ng/mL for OSC and 5-500 ng/mL for SC. The intra- and inter-day precisions (coefficient of variation) were within 7% for both analytes. Their accuracy (relative error) ranged from -6.4 to 1.5%. The limits of detection for OSC and SC were 3 and 1.5 ng/mL, respectively. The limits of quantitation for OSC and SC were 10 and 5 ng/mL, respectively. Recoveries of both analytes were greater than 85% at the low, medium and high concentrations. Both analytes were stable during all sample storage, preparation and analytic procedures. The method was successfully applied to a pharmacokinetic study after an oral administration of OSC to rats with a dose of 15 mg/kg.  相似文献   

10.
A validated high-performance liquid chromatographic method with ultraviolet detection for the quantitative determination of dapsone (4,4'-diaminodifenyl sulfone, DDS) and a metabolite, hydroxylaminodapsone (4-amino-4-hydroxylaminodiphenyl sulfone, DDS-NOH), in human plasma is described. Human plasma was deproteinized with acetone and the clear supernatant solution after centrifugation was evaporated to dryness under a gentle stream of nitrogen at 70 degrees C. The residue was dissolved in a mixture of HPLC eluent and acetone (18:5 v/v) and an aliquot of this solution (50 microL) was injected onto the HPLC column. Dapsone, hydroxylaminodapsone and diazoxide as internal standard, were separated within 10 min by isocratic elution with water:acetonitrile:glacial acetic acid:triethylamine (80:20:1.0:0.5 by volume) as eluent. Detection was by ultraviolet at the wavelength of 295 nm. The within-day repeatability coefficients of variation were 3-5% for dapsone (0.301-20.0 mg/L, n = 5) and 3-5% for hydroxylaminodapsone (0.0948-6.32 mg/L, n = 5), whereas the between-day repeatability coefficients of variation were 3-8% (0.301-20.0 mg/L, n = 5) for dapsone and 4-10% for hydroxylaminodapsone (0.0948-6.32 mg/L, n = 5). The mean recoveries -were 92-107% (0.301-20.0 mg/L, n = 2), 80-82% (0.0948-6.32 mg/L, n = 2) and 88% (0.0200 mg/mL, n = 5), for dapsone, hydroxylaminodapsone and diazoxide, respectively. The average correlation coefficient of the calibration curve was 0.99988 (n = 5) for dapsone at a concentration range of 0.301-20.0 mg/L, whereas the average correlation coefficient of the hydroxylaminodapsone calibration curve was 0.99981 (n = 5) at a concentration range of 0.0948-6.32 mg/L. The limits of detection were 0.00200 and 0.0470 mg/L for dapsone and hydroxylaminodapsone, respectively. The method is suitable for drug level monitoring and for pharmacokinetic studies.  相似文献   

11.
A simple and reliable high-performance liquid chromatographic (HPLC) method has been developed for the determination of nodakenin in rat plasma. The concentration of nodakenin was determined in plasma samples after deproteinization with methanol using hesperidin as internal standard. HPLC analysis was performed on a Diamonsil C(18) analytical column using acetonitrile-water (25:75, v/v) as the mobile phase and a UV detection at 330 nm. This method was validated in terms of recovery, linearity, accuracy and precision (intra- and inter-day variation). The extraction recoveries were 91.3 ± 10, 87.8 ± 4.8 and 92.6 ± 5.1 at concentrations of 0.500, 5.00 and 40.0 μg/mL, respectively. The standard curve for nodakenin was linear (r(2) ≥ 0.99) over the concentration range 0.250-50.0 μg/mL with a lower limit of quantification of 0.250 μg/mL. The intra- and inter-day precision (relative standard deviation, RSD) values were not higher than 12% and the accuracy (relative error, RE) was within ± 5.8% at three quality control levels. The validated method was successfully applied for the evaluation of the pharmacokinetics of nodakenin in rats after oral administration of Rhizoma et Radix Notopterygii decoction and nodakenin solution.  相似文献   

12.
13.
Ning Sun  Guocai Lu  Mei Lin  Yutian Wu 《Talanta》2009,78(2):506-1470
MCC-555 is a novel thiazolidinedione which reduces plasma glucose concentrations in Type 2 diabetes mellitus models due to enhancement of insulin sensitivity. A highly sensitive and selective quantitative method to accurately determine MCC-555 in rat plasma is crucial to the success of pharmacokinetic studies of MCC-555. To this purpose we have developed and validated a high-throughput method in a 96-well plate format using ultra-fast liquid chromatography (Shimadzu Prominence UFLC™ system) for the determination of MCC-555 in rat plasma. MCC-555 along with the internal standard resveratrol was extracted from 50 μl of rat plasma by liquid-liquid extraction using ethyl acetate. Baseline separation of MCC-555 and resveratrol was achieved using UFLC technology on a C18 stationary-phase column with 2.2 μm particle size. The influences of flow rate, column temperature and mobile phase pH on chromatographic performance were investigated. Comparing to the conventional HPLC method, UFLC showed many advantages including reduced run time, less solvent consumption and increased sensitivity. The UFLC method was sensitive with a lower limit of quantification of 0.002 μg/ml, with good linearity (r > 0.999) over the linear range of 0.002-2.0 μg/ml. The intra- and inter-run precision was less than 8.6% and accuracy ranged from −6.4 to 8.2% for quality control samples. The extraction recovery from plasma was no less than 80%. The validation and sample analysis results show that the method is precise, accurate and well suited to support pharmacokinetic studies in rats involving three dose administrations.  相似文献   

14.
A simple, reliable HPLC method with UV detection (295 nm) in rat plasma was developed and validated for quantification of tenatoprazole, a novel proton pump inhibitor, which is in clinical trials. Following a single-step liquid-liquid extraction, the analyte and internal standard were separated using an isocratic mobile phase on a reverse phase C(18) column. The lower limit of quantitation was 20 ng/mL, with a relative standard deviation of less than 10%. A linear dynamic range of 20-6000 ng/mL was established. This HPLC method was validated with between-batch and within-batch precision of 2.9-6.3 and 1.4-5.8%, respectively. The between-batch and within-batch accuracy was 95.1-104.1 and 92.4-101.0%, respectively. This validated method is simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

15.
A sensitive, selective, specific and rapid liquid chromatographic/electrospray ionization tandem mass spectrometric assay method was developed and validated for the simultaneous quantitation of alpha-,beta-arteether (alpha-,beta-AE) and its metabolite alpha-dihydroartemisinin (DHA) in monkey plasma using the propyl ether analogue of beta-arteether (PE) as an internal standard. The method involves a simple two-step liquid-liquid extraction with hexane. The analytes were chromatographed on a C(18) reversed-phase chromatographic column by isocratic elution with methanol-ammonium acetate buffer (pH 4) (92 : 8, v/v) and analysed by mass spectrometry in the multiple reaction monitoring mode. The chromatographic run time was 7 min and the weighted (1/x(2)) calibration curves were linear over the range 0.78-200 ng ml(-1). The method was validated in terms of accuracy, precision, absolute recovery, freeze-thaw stability, bench-top stability and re-injection reproducibility. The limit of detection and lower limit of quantification in monkey plasma were 0.39 and 0.78 ng ml(-1) respectively for all the analytes. The intra- and inter-batch precision and accuracy were found to be well within acceptable limits (<15%). All three analytes were stable even after three freeze-thaw cycles (deviation < 15%). The average absolute recoveries of alpha-,beta-AE, DHA and PE, used as an internal standard, from spiked plasma samples were 85.85 +/- 6.56, 70.10 +/- 7.06, 54.37 +/- 3.39 and 93.90 +/- 6.9%, respectively. The assay method described here could be applied to study the pharmacokinetics of alpha-,beta-AE and DHA in rhesus monkeys.  相似文献   

16.
Xanthohumol (XN) is the major prenylated flavonoid in hop plants and as such a constituent of beer. Pharmacological studies have shown that XN possesses marked antioxidant and antiproliferative effects. In order to study the resorption and metabolism of this compound, reversed-phase high-performance liquid chromatography is used for the determination of XN in rat plasma, urine, and feces. In session one, rats receive either oral or intravenous (iv) administration (20 mg/kg body weight) of XN. In session two, rats receive oral administration of 50, 100, 200, 400, and 500 mg/kg body weight XN for bioavailability studies at various dose levels. Plasma, urine, and feces are collected at varying time points and assayed for their XN content. Plasma levels of XN fell rapidly within 60 min after iv administration; no XN is detected in plasma after oral administration in either session. XN and its metabolites are excreted mainly in feces within 24 h of administration. The method is a reliable tool for performing studies of XN in different biological material.  相似文献   

17.
The retention behavior of uranium, thorium and lanthanides has been investigated with amide modified reversed phase C18 supports using α-hydroxy isobutyric acid (α-HIBA) as the mobile phase. Four structurally different amide moieties namely, 4-hydroxy-N,N-dihexyl butyramide (4HHBA), 4-hydroxy-N,N-di-2-ethylhexylhexanamide (4HEHHA), bis(N,N,N′,N-2-ethylhexyl)malonamide (B2EHM) and N-methyl-tris(dihexylcarbamoyl-3-methoxy)pivolamide (MTDCMPA) have been synthesized and studied. Among the various amide coated columns, the supports modified with 4HHBA, B2EHM and MTDCMPA exhibit an interesting retention for uranium and thorium, which is different from 4HEHHA modified support. The retention time for uranium and thorium increases with increasing amide concentration for 4HHBA, B2EHM and MTDCMPA supports, while the same decreases with increasing 4HEHHA content. However, the separation factor for uranium and thorium is greater on a 4HEHHA support, compared to an unmodified C18 column, reflecting the amide's preferential complexation of uranium over thorium.Columns modified with 4HHBA, B2EHM and MTDCMPA exhibit relatively higher retentions for lanthanides. However, MTDCMPA modified support shows a different elution profile for lanthanides compared to 4HHBA, and B2EHM modified columns. Individual separations of heavier lanthanides, i.e., from gadolinium to lutetium also have been achieved using 4HHBA and B2EHM modified supports.The influence of modifier content, mobile phase concentration and its pH on the retention of metal ions has also been studied. Based on these investigations, an efficient high performance liquid chromatographic method (HPLC) has been developed for the rapid separation of uranium from thorium as well as for the individual separation of heavier lanthanides.  相似文献   

18.
A new, simple and sensitive high-performance liquid chromatography (HPLC) method with fluorescence detection was developed and validated for the determination of vardenafil in small volumes of rat plasma and bile. The absorbance and fluorescence characteristics of vardenafil were studied and factors that affect the HPLC resolution and fluorescence intensity were examined and optimized. Vardenafil and the internal standard cisapride were extracted using acetonitrile. The separation was achieved on a C18 column at 35 degrees C using acetonitrile-50 mM ammonium acetate aqueous solution (pH 6.8) (40:60) as mobile phase. At a flow rate of 1 ml/min, the total run time was 18 min. Fluorescence was measured with excitation and emission set at 280 and 470 nm, respectively. The calibration curves were linear from 10 to 1000 ng/ml and 0.2-100 microg/ml for plasma and bile samples, respectively. The intra- and inter-day imprecision did not exceed 10.8%, and the accuracy was within 9.6% deviation of the nominal concentration. The method was used successfully to investigate the disposition and biliary excretion of vardenafil in rats.  相似文献   

19.
A simple high-performance liquid chromatographic method was developed to study the pharmacokinetics of forsythiaside in rat plasma after intravenous administration. Hesperidin was used as the internal standard. The drugs were separated on a reversed-phase C(18) column and detected at 332 nm. Good linearity was achieved in the range of 0.067-26.667 microg/mL. The intra- and inter-assay variation coefficients for this analysis were no more than 10.94 and 14.56%, respectively. The average recovery for forsythiaside was 87.42% from plasma. The analytical sensitivity and accuracy of this assay were adequate for characterization of the pharmacokinetics of intravenous administration of forsythiaside to rats and the assay has been successfully applied to provide pharmacokinetic data. The mean t(1/2Z) was 20.36, 19.40 and 23.62 min for 2, 5 and 20 mg/kg for forsythiaside after i.v. administration, respectively. The AUC(0-t) increased linearly from 40.64 to 624.14 microg min/mL after administration of the three doses.  相似文献   

20.
Wu X  Yamashita F  Hashida M  Chen X  Hu Z 《Talanta》2003,59(5):965-971
A simple high-performance liquid chromatography (HPLC) method is described for the determination of matrine in rat plasma. The plasma was deproteinized with acetonitrile that contained an internal standard (phenacetin) and was separated from the aqueous layer by adding sodium chloride. Matrine was extracted into the acetonitrile layer with high yield, and determined by reversed-phase HPLC (column: YMC-pack ODS-A, 5 μm, 150×4.6 mm, I.D.; eluent: acetonitrile-0.02 mol ammonium acetate buffer-triethylamine (35:65:0.035, v/v/v) and ultraviolet detection (220 nm). The limit of quantitation for matrine was 200 ng ml−1 in plasma, and the recovery was greater than 89%. The assay was linear from 0.5 to 50.0 μg ml−1. Variation over the range of the standard curve was less than 6%. The method was used to determine the concentration-time profiles of matrine in the plasma following oral administration of matrine aqueous solution or bolus injection from which the fractions of matrine reaching the systemic circulation were estimated by a deconvolution method for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号