首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the multiple-vehicle collision when a vehicle decelerates suddenly in a single-lane traffic flow. The extended optimal velocity model is used for the vehicular motion to take into account the relative velocity. If a vehicle slows down suddenly and the following vehicle does not decelerate successfully, it crashes into the vehicle ahead with a residual speed and the crash may induce more collisions. The number of crumpled vehicles depends on the initial headway, the sensitivity, the initial velocity, and the relative velocity. We derive the region map (phase diagram) for the multiple-vehicle collision. The dependence of the multiple-vehicle collision on the density, sensitivity, and relative velocity is shown.  相似文献   

2.
王菲  芶秉聪 《中国物理 B》2008,17(4):1227-1230
This paper uses the two-centre atomic orbital close-coupling method to study the ionization and the single electron capture in collision of highly charged Ar^16+ ions with He atoms in the velocity range of 1.2-1.9 a.u.. The relative importance of single ionization (SI) to single capture (SC) is explored. The comparison between the calculation and experimental data shows that the SI/SC cross section ratios from this work are in good agreement with experimental data. The total single electron ionization cross sections and the total single electron capture cross sections are also given for this collision. The investigation of the partial electron capture cross section shows a general tendency of capture to larger n and l with increasing velocity from 1.2 to 1.9 a.u..  相似文献   

3.
We developed a numerical model based on a multi-species lattice gas cellular automaton to study passive and reactive tracer migration in saturated geological media. The model was made of multiple lattice gases interacting via a two-species collision rule. For a binary mixture, the model displayed a negative deviation from Raoult's law and therefore behaved as a real solution. By biasing the initial two-species collision rule, our model was made to obey the tracer assumption which requires that the tracer species does not affect the velocity of the vehicle fluid. In a 2D fracture, we checked the Taylor-Aris relation. An irreversible adsorption between the tracer and the solid phase was numerically added to perform filtration of the colloids. A good agreement was found with the solution of the filtration equation. An attachment efficiency was defined and was found to bear a linear relationship to the filtration coefficient. We added a third species to study the potential role of colloids in the transport of contaminants. Contaminant migration was enhanced when contaminants were bound to colloids and was slightly reduced when colloids were allowed to adsorb on the solid phase. Received 14 January 1999 and Received in final form 8 June 1999  相似文献   

4.
We consider a class of mechanical particle systems interacting with thermostats. Particles move freely between collisions with disk-shaped thermostats arranged periodically on the torus. Upon collision, an energy exchange occurs, in which a particle exchanges its tangential component of the velocity for a randomly drawn one from the Gaussian distribution with the variance proportional to the temperature of the thermostat. In the case when all temperatures are equal one can write an explicit formula for the stationary distribution. We consider the general case and show that there exists a unique absolutely continuous stationary distribution. Moreover under rather mild conditions on the initial distribution the corresponding Markov dynamics converges to the equilibrium with exponential rate. One of the main technical difficulties is related to a possible overheating of moving particle. However as we show in the paper non-compactness of the particle velocity can be effectively controlled.  相似文献   

5.
We study the properties of breather interactions in nonlinear Kerr media with self-steepening and space-time correction and with either self-focusing or self-defocusing nonlinearity, and present a new family of exact breather solutions via the Darboux transformation with a special-designed quadratic spectral parameter. In contrast to the previous results of the nonlinear Schr?dinger equation(NLSE) hierarchy, we show that the relative phase of colliding breathers has a significant effect on the collision manifestation. In particular, only the out-of-phase interactions can generate small amplitude waves at the collision center, which are analogous to the NLSE superregular breathers. Our results will deepen our understanding of the properties of breather interactions and they will offer the possibility of experimental observations of super-regular breather dynamics in systems with self-steepening and space-time correction.  相似文献   

6.
7.
The generation of dynamic holograms and four-wave phase conjugation in resonant media has been investigated under conditions of interaction between radiation and excited singlet and triplet states. Two mechanisms of optical control of resonant media non-linearities using independent pump-up to increase the diffraction efficiency of dynamic holograms have been considered. The peculiarities of non-linear recording of holograms, and a variant of quadratic recording, have been investigated. The dependence of the efficiency of diffraction by dynamic holograms on the intensity of interacting waves and the spectroscopic characteristics of the medium has been analysed.  相似文献   

8.
A Λ-type three-level atomic system in the electromagnetically induced transparency (EIT) configuration interacting with a broadband squeezed vacuum (SV) bath is studied with quantum interference (QI) between decay channels taken into account. We formulate two sufficient critical conditions for the medium to be dispersionless or absorptionless. Computational results for the dispersion and absorption spectra show that presence of both QI and SV offers more avenues to manipulate the group velocity of probe pulse for its variation from sub-luminal to super-luminal regimes. The relative phase between the two external fields is found to act as a control knob of the atomic medium.  相似文献   

9.
《Physics Reports》1988,164(3):119-215
We present results for the dynamics of evolution of non-linear state plasmas in a d.c. electric field which causes ion-acoustic turbulence (IAT). We look at (1) the time variation of the drift electron velocity and of the effective collision frequency, (2) features of the redistribution and heating of resonance ions, (3) the evolution of the spectral and angular distribution of turbulent pulsations, (4) processes of heating of the bulk of the particles. The results of an analytical IAT theory are compared with computer simulations.Special attention is paid to the theory of inhomogeneous plasmas with IAT. A self-consistent theory of anomalous transport is presented. We discuss the anisotropy of anomalous transport and the influence of non-Maxwellian particle velocity distributions on the transport processes. The electromagnetic properties, self-organization and hydrodynamic instability of plasmas with IAT are discussed.  相似文献   

10.
The nonlinear dynamics of the interface between ideal dielectric fluids in the presence of tangential discontinuity of the velocity at the interface and the stabilizing action of the horizontal electric field is examined. It is shown that the regime of motion of the interface where liquids move along the field lines occurs in the state of neutral equilibrium where electrostatic forces suppress Kelvin–Helmholtz instability. The equations of motion of the interface describing this regime can be reduced to an arbitrary number of ordinary differential equations describing the propagation and interaction of structurally stable solitary waves, viz. rational solitons. It is shown that weakly interacting solitary waves recover their shape and velocity after collision, whereas strongly interacting solitary waves can form a wave packet (breather).  相似文献   

11.
Using a non-linear transport equation to describe the energy-sharing process in an isotropic collision cascade, we have numerically calculated sputtered particle velocity spectra for several very low energy (<10 eV) primary recoil distributions. Our formulation of the sputtering process is essentially that used in the linear model and our equations yield the familiar linear model results in the appropriate limit. Discrepancies between our calculations and the linear model results in other cases may be understood by considering the effects of the linear model assumptions on the sputtering yield at very low energies. Our calculations are also compared with recent experimental results investigating ion-explosion sputtering. The results of this comparison support the conclusion that in insulators sputtering is initiated by very low energy recoil atoms when the energy of the incident beam is high enough that the stopping power is dominated by the electronic contribution. The calculations also suggest that energy spectra similar to those for evaporation may result from non-equilibrium processes but that the apparent temperatures of evaporation are not related in a simple way to any real temperature within the target.  相似文献   

12.
通过实验和数值模拟方法,对微细颗粒(直径小于100 μm)碰撞规律进行研究.首先采用离散元模拟,基于改进的硬球模型,探索在流场作用下,微细颗粒的初始速度、表面能、尺寸、质量浓度和风速对微细颗粒之间的结合性碰撞及非结合性碰撞的影响,同时考虑微细颗粒团聚及沉降的物理运移过程,得出不同初始条件下微细颗粒碰撞频率的演化规律.最后进行物理实验,发现模拟得到的碰撞频率与实验得到的微细颗粒自沉降特征相一致.  相似文献   

13.
Previous papers on the quantum wakefield around an ion moving in a dense plasma have considered the collision frequency in the static approximation. In this work, we present the results of the dynamically screened ion potential taking into account the dynamical electron–ion collision frequency. The Lenard–Balescu dynamical collision frequency and various approximations to it are considered. As a main result of our investigation for the subsonic, sonic, and supersonic regimes, we find that the frequency dependence of collisions can be safely discarded if the electronic streaming velocity (relative to an ion) is comparable to or less than the electronic Fermi velocity.  相似文献   

14.
We discuss the non-relativistic theory of electron capture from atoms (or ions) by ions when the relative velocity of the collision is greater than the orbital velocity of the captured electron. We emphasize the specific difficulties due to the two-body Coulomb potentials occurring in this process We show how the simplifications introduced by the small value of the electron to proton mass ratio can be used to provide a valuable tool to evaluate the adequacy of the existing theories. Extensive comparisons between theory and experiment are carried out and a number of new theoretical results are presented.  相似文献   

15.
The properties of the collision integral in a quantum Boltzmann-type kinetic equation are studied under the conditions of spatially nonuniform distributions of colliding particles interacting with an external electromagnetic field. The components of the nonlinear resonances and the velocity distribution of the excited atoms, which are due to polarization transitions, are determined on the basis of the Kazantsev collision integral.  相似文献   

16.
We develop the theory of second-harmonic generation in metamaterials where fundamental radiation is considered in the constant-intensity approximation taking into account the phase changes of interacting waves. We investigate the second-harmonic wave intensity in metamaterials at different parameters of the problem under consideration. We consider a self-action effect of the light wave in metamaterials in view of the phase changes of all the interacting waves and compare this effect with an analogous effect in usual homogeneous quadratic media. We show that it is possible to change the phase velocity of the pump wave by varying such parameters as the pump intensity, nonlinear medium length, and phase mismatch between the interacting waves. The metamaterials under consideration provide a possibility to change the phase of the fundamental radiation of order of magnitude higher than those in the usual homogeneous quadratic media.  相似文献   

17.
To obtain further insight on possible power law generalizations of Boltzmann equilibrium concepts, we consider stochastic collision models. The models are a generalization of the Rayleigh collision model, for a heavy one dimensional particle M interacting with ideal gas particles with a mass m<<M. Similar to previous approaches we assume elastic, uncorrelated, and impulsive collisions. We let the bath particle velocity distribution function to be of general form, namely we do not postulate a specific form of power-law equilibrium. We show, under certain conditions, that the velocity distribution function of the heavy particle is Lévy stable, the Maxwellian distribution being a special case. We demonstrate our results with numerical examples. The relation of the power law equilibrium obtained here to thermodynamics is discussed. In particular we compare between two models: a thermodynamic and an energy scaling approaches. These models yield insight into questions like the meaning of temperature for power law equilibrium, and into the issue of the universality of the equilibrium (i.e., is the width of the generalized Maxwellian distribution functions obtained here, independent of coupling constant to the bath).  相似文献   

18.
With regard to experimental applications in plasma diagnostics numerical approximations are given for the Gurevic-type correction functions, which in the kinetic theory of weakly ionized plasmas describe the deviations from the Lorentzian electrical conductivity. The approximations are based either upon the dependance of the collision frequency on the power of the electron velocity, or on a first order Taylor expansion around the most probable electron velocity of a Maxwellian distribution. For all assumptions regarding the velocity dependance of the collision frequency the influence of temperature (and pressure) on the effective collision frequency is indicated.  相似文献   

19.
In our consideration, a comparison between four different types of controllers for suppression the vibrations of the cantilever beam excited by an external force is carried out. Those four types are the linear velocity feedback control, the cubic velocity feedback control, the non-linear saturation controller (NSC) and the positive position feedback (PPF) controller. The suitable type is the PPF controller for suppression the vibrations of the cantilever beam. The approximate solution obtained up to the first approximation by using the multiple scale method. The PPF controller effectiveness is studied on the system. We used frequency-response equations to investigate the stability of a cantilever beam. We notified that, there is a good agreement between the analytical solution and the numerical solution.  相似文献   

20.
Motivated by the physical relevance of a spectral singularity of interacting many-particle system, we explore the dynamics of two bosons as well as fermions in one-dimensional system with imaginary delta interaction strength. Based on the exact solution, it shows that the two-particle collision leads to amplitude-reduction of the wave function. For fermion pair, the amplitude-reduction depends on the spin configuration of two particles. In both cases, the residual amplitude can vanish when the relative group velocity of two single-particle Gaussian wave packets with equal width reaches the magnitude of the interaction strength, exhibiting complete particle-pair annihilation at the spectral singularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号