首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
有机硅/蒙脱土复合改性聚氨酯弹性体的制备和性能   总被引:1,自引:0,他引:1  
采用先将聚醚三元醇N330与有机蒙脱土(OMMT)研磨,制得N330/OMMT复合物,再将其与有机硅改性聚氨酯的预聚体混合的方法,以二甲硫基甲苯二胺(DMTDA)为固化剂,制备了有机硅/蒙脱土复合改性聚氨酯弹性体,并用FTIR对产物结构进行了表征.XRD和TEM表明,蒙脱土片层被撑开,并分散在基体中;SEM显示,加入蒙脱土后,有机硅与聚氨酯之间的相容性提高;TGA表明,有机硅和OMMT共同改性聚氨酯后,其耐热性比有机硅单一改性聚氨酯有所提高,并在OMMT含量为5 wt%时提高最大;DSC数据表明,在OMMT含量为5 wt%时,有机硅/蒙脱土复合改性聚氨酯弹性体的Tg明显升高.复合改性材料具有良好的表面性能和力学性能,其拉伸强度、断裂伸长率和硬度在OMMT含量为3 wt%时达到最大值.  相似文献   

2.
通过原位聚合法制备了本质阻燃聚苯乙烯[P(St-co-AEPPA)]/有机改性蒙脱土(OMMT)纳米复合物[P(St-co-AEPPA)/OMMT], 并用普通聚苯乙烯/有机改性蒙脱土(PS/OMMT)复合物作为对比实验, 研究了含磷、氮单体丙烯酸羟乙基-苯氧基-二乙基磷酰胺(AEPPA)和OMMT等添加物对本质阻燃聚苯乙烯性能的影响.用X射线衍射仪(XRD)和透射电子显微镜(TEM)分析了复合材料的结构与形貌, 并对OMMT在基体中的分散机理进行了讨论.用差示扫描量热仪(DSC)、热重分析(TGA)和微型量热仪(MCC)研究了材料的热性能和燃烧性能.结果表明, AEPPA和OMMT能够显著提高基体的热稳定性和阻燃性.  相似文献   

3.
朱雪丹  张光华  张万斌 《应用化学》2009,26(12):1414-1417
采用蒙脱土(MMT)改性聚苯乙烯-丙烯酸酯(PSB)乳液制备了一种新型表面施胶剂。 比较了不同方法合成的乳液在性能上的异同。 采用X射线衍射(XRD)和透射电子显微镜(TEM)测试技术表征了复合材料的结构。 研究了苯丙/蒙脱土纳米复合乳液作为表面施胶剂对纸张的物理性能和抗水性能的影响。 结果表明,聚合法制备的复合乳液中蒙脱土片层已发生剥离并在复合物中呈现纳米级分散。 纳米复合乳液与淀粉以质量比1∶10(绝干)复配进行表面施胶时,纸张的施胶度、挺度和环压强度比纯苯丙施胶剂分别提高1.8倍、45.5%和44%。  相似文献   

4.
丙烯酸树脂/蒙脱土纳米复合材料的制备研究   总被引:3,自引:1,他引:2  
采用离子交换法,用十六烷基三甲基溴化铵对钠基蒙脱土(Na-MMT)进行改性制备了有机蒙脱土(OMMT).用丙烯酸(AA)、硫酸化蓖麻油、乳化剂OP-10、过硫酸钾为原料进行水溶液聚合制得丙烯酸树脂.将丙烯酸树脂与改性蒙脱土通过聚合插层制备了丙烯酸树脂/ 蒙脱土纳米复合材料.通过傅立叶变换红外(FTIR)和X-射线衍射 (XRD)等手段对复合材料的结构进行了表征,结果表明:丙烯酸树脂插层进入有机蒙脱土内可形成插层型或剥离型的纳米复合材料.蒙脱土含量及蒙脱土与丙烯酸树脂的反应温度、反应时间均对复合材料的剥离行为产生影响,在蒙脱土含量为树脂固含量的7%、温度为70℃、反应4h的条件下可得到完全剥离的纳米复合材料.  相似文献   

5.
高抗冲聚苯乙烯/蒙脱土复合材料的阻燃性研究   总被引:11,自引:0,他引:11  
用经十六烷基三甲基溴化铵有机化改性的蒙脱土 (OMMT)与高抗冲聚苯乙烯 (HIPS)通过熔融插层法制备了HIPS OMMT复合材料 ,用X ray衍射技术对材料结构进行了表征 ,发现钠基蒙脱土 (Na+ MMT)和有机蒙脱土的层间距分别为 1 5 1nm和 2 18nm ,HIPS OMMT(5phr)复合材料中蒙脱土的层间距因聚合物大分子的插入扩大为 3 4 4nm ;而HIPS与Na+ MMT形成的复合材料的层间距与Na+ MMT的层间距相比却没有变化 ,表明未有机化处理土没有形成插层结构 .锥形量热仪的研究结果表明HIPS OMMT复合材料的热释放速率、质量损失速率以及生烟速率等燃烧特性参数均显著降低 ,具有较明显的阻燃性和抑烟性 ,而HIPS Na+ MMT非插层型复合材料只有在Na+ MMT很高填充量下 (>2 0phr)才有一定阻燃效果 .比较了铵盐对HIPS阻燃性的影响 ,结果表明铵盐自身的阻燃作用很小 ,主要是插层复合结构起阻燃作用 .  相似文献   

6.
采用"碱-酸-碱"合成工艺,在各阶段将OMMT(有机蒙脱土)投入反应体系,制备有机蒙脱土改性脲醛树脂胶黏剂,测试胶黏剂的各项性能,用XRD(X射线衍射仪)、FTIR(傅里叶变换红外光谱)、SEM(扫描电镜)、TG(热重分析)对改性胶黏剂结构进行表征.实验结果表明,随着OMMT的加入,胶黏剂的游离甲醛含量降低,胶合强度增加.第一阶段投入OMMT,降醛效果明显,第二阶段投入OMMT,补强效果明显.SEM图显示,改性胶黏剂中被剥离成片层状的OMMT因受基体的包覆或挤压,呈现出蜷曲的形状;XRD图谱显示,OMMT/UF胶黏剂的结晶度低于UF胶黏剂的结晶度,有机蒙脱土的加入,破坏了脲醛树脂中羰基和氨基的规整性排列;FTIR图谱表明,改性脲醛树脂胶黏剂中存在大量游离的尿素,胶黏剂的游离甲醛含量低;TG分析得出,改性胶黏剂的TG曲线移向高温方向,材料的热分解温度提高.  相似文献   

7.
酸酐固化环氧树脂/蒙脱土复合材料的等温固化动力学   总被引:5,自引:0,他引:5  
用等温差示扫描量热法(DSC)研究了酸酐固化环氧树脂/蒙脱土复合材料的等温固化过程,考察了未处理的蒙脱土(MMT)和有机蒙脱土(OMMT)对环氧树脂固化动力学的影响. 实验表明, 环氧树脂的固化过程包含自催化机理,加入蒙脱土没有改变固化反应机理. 用Kamal方程对该体系的固化过程进行拟合,得到反应级数m、n,反应速率常数k1、k2,总反应级数(m + n)在2.4~3.0之间. MMT的加入使环氧树脂体系的k1、k2有所降低,而OMMT的加入对体系的k1、k2影响较为复杂,加入蒙脱土对环氧树脂固化体系的活化能影响较小.  相似文献   

8.
聚碳酸1,2-丙二酯/蒙脱土复合材料的制备与性能   总被引:2,自引:0,他引:2  
利用阳离子交换法,以十六烷基三甲基溴化铵(HTAB)改性钠基蒙脱土制备了有机改性蒙脱土(OMMT),OMMT的层间距达到了2nm,比普通的钠基蒙脱土增加了0.74nm.采用熔融插层法制备了插层-絮凝型PPC/OMMT复合材料,当复合材料中OMMT含量为5wt%时,复合材料的杨氏模量较纯PPC树脂大幅度提高了61.8%,同时玻璃化温度(Tg)提高了2.4℃,热分解温度提高了32.3℃.因此,OMMT对大幅度提高PPC的杨氏模量具有很大的潜力.  相似文献   

9.
十二烷基磺酸钠改性蒙脱土的制备与表征   总被引:27,自引:0,他引:27  
利用阴离子表面活性剂十二烷基磺酸钠(SDS)改性天然蒙脱土,研究了反应介质的酸碱性对插层效果的影响。X射线粉未衍射(XRD)、红外光谱(FT-IR)、热重分析(TGA)表明SDS已插层到蒙脱土片层间,沉降实验和流变学性质研究表明改性后蒙脱土在有机介质中表现出很好的分散性、溶胀性和高触变性。这种改性效果优于目前常用的十六烷基三甲基溴化铵(CTAB)处理效果。解释了阴离子表面活性剂对蒙脱土的插层机理。  相似文献   

10.
钟柳  欧育湘 《化学研究》2006,17(3):56-59
采用双酚A双(二苯基)磷酸酯(BDP)、有机改性蒙脱土(OMMT)和环氧树脂(EP),分别制备了阻燃环氧树脂(BDP-EP)和阻燃纳米材料(BDP-OMMT-EP).利用氧指数、水平垂直燃烧、热重分析以及锥形量热等技术探讨了阻燃材料的阻燃性能和阻燃机理.实验结果证明,BDP-EP和BDP-OMMT-EP的最大热释放速率和平均热释放速率等参数都降低了,但是BDP的阻燃效果优于BDP-OMMT,即BDP和OMMT没有协同阻燃作用.  相似文献   

11.
Banana fiber, a waste product of banana cultivation, has been used to prepare banana fiber reinforced soy protein composites. Alkali modified banana fibers were characterized in terms of density, denier and crystallinity index. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were also performed on the fibers. Soy protein composites were prepared by incorporating different volume fractions of alkali-treated and untreated fibers into soy protein isolate (SPI) with different amounts of glycerol (25%–50%) as plasticizer. Composites thus prepared were characterized in terms of mechanical properties, SEM and water resistance. The results indicate that at 0.3 volume fraction, tensile strength and modulus of alkali treated fiber reinforced soy protein composites increased to 82% and 963%, respectively, compared to soy protein film without fibers. Water resistance of the composites increased significantly with the addition of glutaraldehyde which acts as cross-linking agent. Biodegradability of the composites has also been tested in the contaminated environment and the composites were found to be 100% biodegradable.  相似文献   

12.
Organically modified montmorillonite (OMMT) was used as synergist to enhance the flame-retardant and mechanical properties of poly(butylene succinate)/intumescent flame retardant (PBS/IFR) composites. The flame-retardant, thermal degradation and combustion properties of PBS and its flame-retardant composites were characterized by limiting oxygen index (LOI) test, vertical burning (UL-94) test, thermogravimetric analysis, cone calorimeter and scanning electron microscopy, respectively. The results indicate that PBS/IFR composites exhibit excellent flame retardance when OMMT is at an appropriate content. PBS/IFR composite with 20 wt% IFR and 1.5 wt% OMMT has an LOI of 40.1% and can pass the UL-94 V0 rating. The synergistic effect between OMMT and IFR on the flame-retardant properties of PBS depends on the content of OMMT, and excessive OMMT diminish this synergistic effect. The possible flame-retardant mechanism of OMMT on PBS/IFR composite is proposed. The results of mechanical test also indicate that OMMT can effectively increase the notched impact strength of PBS/IFR composites.  相似文献   

13.
Summary: This communication describes the compatibilization efficiency of organically modified montmorillonite (OMMT) in immiscible polycarbonate (PC)/poly(methyl methacrylate) (PMMA) blends for the first time. The size of the dispersed PC particles was reduced significantly upon the addition of OMMT (6 wt.‐%) to the blend. The compatibilization effect of the OMMT was also assessed by differential scanning calorimetry, mechanical properties and thermal stability analysis of the modified blend.

SEM images of the fracture surfaces.  相似文献   


14.
In this study, a suitable method is reported to produce reinforced antibacterial paper packaging using the antimicrobial triclosan (TC) and organically modified montmorillonite (OMMT) as “model” compounds. Direct incorporation of TC at a concentration of 1 wt% and OMMT at concentrations of 1, 4, 7, and 10 wt% into papers was performed via coating process, and the resulting materials were characterized by in vitro antimicrobial assays, thermogravimetric analysis, scanning electron microscopy, mechanical tests, and water vapor transmission rate determinations. It was demonstrated that the presence of 1% TC in the coated papers exhibited inhibitory effects against Staphylococcus aureus and Escherichia coli. It was also pointed out that increases of approximately 30% in the tensile strength of commercial paper are obtained by using the OMMT at a concentration of 1 wt%. Water barrier property and thermal stability of paper were also enhanced because of the coating process and the incorporation of OMMT. The results from this study demonstrate that OMMT has a great potential to be incorporated into coating formulations to obtain antibacterial‐coated papers with improved properties for various packaging applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
丙烯酸酯改性水性聚氨酯乳液的制备及性能研究   总被引:10,自引:0,他引:10  
采用共聚的方法制备出丙烯酸酯改性的水性聚氨酯共聚乳液(PUA乳液),并对PUA乳液的制备方法和工艺、耐溶剂性、机械稳定性进行了初步的研究。结果表明,具有IPN结构的PUA乳液耐溶剂性、机械稳定性比水性PU有明显的提高。  相似文献   

16.
In this work, the sugarcane bagasse (SCB) fibers were used as reinforcing filler for recycled high density polyethylene (rHDPE) to form eco-friendly composite. The SCB surface was chemically modified to improve the compatibility with rHDPE matrix. The SCB fibers were alkali modified using 10% sodium hydroxide (SCBm) and acetylated using acetic anhydride (SCBac). The chemically modified SCB fibers were characterized using Fourier transform infrared (FTIR) and scanning electronic microscopy (SEM). The composites were prepared by mixing of rHDPE with 15 phr (parts per hundred parts rHDPE) of different SCB samples. Neat rHDPE and its composites with SCB were irradiated by gamma radiation dose of 50–250 kGy. The Effect of gamma radiation on the water up-take, mechanical properties and the thermal stability of (rHDPE) and its composites was studied. The effect of gamma radiation on the compatibility between rHDPE and SCB was also investigated. The results showed that the combination between the chemical modification of fibers and the irradiation of polymer composites were more effective in compatibility improvement than chemical modification alone. The irradiated (at 100 kGy) composite containing of SCBac gave the best mechanical properties, lowest water up-take and the highest thermal stability.  相似文献   

17.
A series of organic‐montmorillonite (OMMT) modified shape memory epoxy (SMEP) composites were prepared for the purpose of application on space deployable structures. Tensile test, dynamic mechanical analysis (DMA), X‐ray diffraction (XRD), scanning electron microscope (SEM), and fold‐deploy shape memory test methods were used to characterize the mechanical, structure, and shape memory properties of these materials. The results showed addition of OMMT could improve the composites' toughness, tensile strength, transition temperature, and shape recovery speed, while shape recovery ratio was unaffected. Composite with 3wt%. OMMT had the optimum combination property. It could fully recover its original shape in about 2 min at 185°C under the maximum bending angle of 180°. Its elongation at break and tensile strength were increased by 835 and 17.4%, respectively, compared to that of neat SMEP. The transition temperature also slightly increased. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In the present work, tamarind fibers were extracted from ripened fruits by the water retting process. Using these fibers as reinforcement and unsaturated polyester as matrix, composite samples were prepared by the hand lay-up technique. The effect of chemical surface treatments (alkali and silane) of tamarind fibers on the mechanical properties, chemical resistance, and interfacial bonding was studied. The mechanical properties of the composites with surface modified fibers were found to be higher than those with unmodified fibers. Morphological studies indicated improvement of interfacial bonding by alkali and silane coupling agent treatments of the fibers. The composites were found to be resistant to many chemicals.  相似文献   

19.
The aim of the present study was to investigate and compare the mechanical properties of untreated and chemically modified Borassus fiber–reinforced epoxy composites. Composites were prepared by the hand lay-up process by reinforcing Borassus fibers with epoxy matrix. To improve the fiber-matrix adhesion properties, alkali (NaOH) and alkali combined with silane (3-aminopropyltriethoxysilane) treatment of the fiber surface was carried out. Examinations through Fourier transform-infrared spectroscopy and scanning electron microscopy (SEM) were conducted to investigate the structural and physical properties of the Borassus fibers. Tensile properties such as modulus and strength of the composites made with chemically modified and untreated Borassus fibers were studied using a universal testing machine. Based on the experimental results, it was found that the tensile properties of the Borassus-reinforced epoxy composites were significantly improved as compared with the neat epoxy. It was also found that the fiber treated with a combination of alkali and silane exhibited superior mechanical properties to alkali-treated and untreated fiber composites. The nature of the fiber/matrix interface was examined through SEM of cryo-fractured samples. Chemical resistance of composites was also found to be improved with chemically modified fiber composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号