首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method has been developed capable of describing the incorporation of electrolyte anions along the pore wall surface and across both the barrier layer and the pore wall oxide after the establishment of the steady state of growth of porous anodic Al2O3 where other methods cannot be applied to obtain reliable results. The knowledge of the nature/composition of anodic oxides as regards the incorporation of species like electrolyte anions is of specific importance for both the understanding of the electrochemical mechanism of oxide production and growth and the scientific and technological applications of porous anodic Al2O3 films. The method consists of the selection and use of a suitable catalytic probe reaction on porous anodic oxides at thicknesses varying from a value near zero up to the maximum limiting thickness and the treatment of the experimental reaction rate results by a properly developed mathematical formalism. This method was employed in anodic Al2O3 films prepared in H2SO4 anodizing electrolyte at a constant bath temperature and different current densities using as a probe reaction the decomposition of HCOOH on these oxides, which is almost exclusively a dehydration reaction, at relatively high reaction temperatures, 350 °C and 390 °C, where the effect of other species except SO4 2− incorporated in the oxide on the reaction rate is eliminated. It has been shown that the fraction of the intercrystallite surfaces occupied by SO4 2− follows a parabola-like distribution. It has a significant value at the pore base surface, depending on the current density, then it passes through a maximum along the pore wall surface and across both the barrier layer and the pore walls near the pore bases at positions depending on the current density and then becomes almost zero at the mouths of the pores of the oxide with the maximum limiting thickness and at both the Al2O3/Al interface and cell boundaries. The maximum value of the surface coverage is almost independent of the current density and is always near 1, showing an almost complete saturation of intercrystalline surfaces at these positions. The above distribution of surface coverage predicts a qualitatively similar distribution of the SO4 2− bulk concentration across both the barrier layer and pore wall oxide around the pore bases. The method may be improved and developed further either for a more detailed investigation of the above films or to investigate films prepared in other pore-forming electrolytes. Received: 30 July 1998 / Accepted: 30 September 1998  相似文献   

2.
An atmospheric pressure, reactive DC plasma spray system was used to evaluate a process for depositing porous, complex oxide thin films. A mixture of La3O3, SrCO3, and MnCo3 was used to produce a porous cathode layer for potential application in planar solid oxide fuel cells. The coated lanthanum strontium manganite (LSMO) layer made from the mixture was compared to ones generated using a pre-reacted LMSO powder made by solid-state reaction. The results showed that the crystallization of the reactive-spray formed coating layer on the zirconia substrate was higher than that of the coating layer on the mild steel from the pre-reacted LMSO powder. It is both a simpler process and gave better crystallization. The controlled porous coating layers with open pore size of less than 1 m were successfully produced in a reactive DC plasma spray system from the mixture of raw materials.  相似文献   

3.
The influence of thermal process for indium hydroxoformate, In(OH)(HCO2)2, used as one of the precursor material of ITO transparent conducting films, has been successfully investigated in some controlled atmospheres by unique thermal analyses equipped with a humidity generator, which are thermogravimetry - differential thermal analysis (TG-DTA), thermogravimetry in conjunction with evolved gas analysis using mass spectrometry (TG-MS) and simultaneous measurement of differential scanning calorimetry and X-ray diffractometry (XRD-DSC). The thermal process in dry gas atmosphere by linear heating experiment was indicated through a single-step reaction between 200 and 300°C, while the thermal process in the atmosphere of controlled humidity proceeded through two-step reactions and the formation of crystalline indium oxide (In2O3) was effectively promoted and completed at the lower temperatures with introducing water vapor in the atmosphere. The thermal process changed dramatically by introducing water vapor and was quite different from that in dry gas atmosphere. Pure In2O3 was synthesized in inert atmosphere of controlled humidity and could be easily formed at temperatures below 260°C. The XRD-DSC equipped with a humidity generator revealed directly the crystalline change from In(OH)(HCO2)2 to In2O3 and the formation of the intermediate during the thermal decomposition. A detailed thermal process of In(OH)(HCO2)2 and the effect of heating atmosphere are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
CoFe2O4/Pb(Zr0.53Ti0.47)O3 (CFO/PZT) magnetoelectric composite thin films of 2-2 type structure had been prepared onto Pt/Ti/SiO2/Si substrate by a sol-gel process and spin coat-ing technique. The structure of the prepared thin film is substrate/PZT/CFO/PZT/CFO. Two CFO ferromagnetic layers are separated from each other by a thin PZT layer. The upper CFO layer is magnetostatically coupled with the lower CFO layer. Subsequent scan-ning electron microscopy (SEM) investigations show that the prepared thin films exhibit good morphologies and compact structure, and cross-sectional micrographs clearly display a multilayered nanostructure of multilayered thin films. The composite thin films exhibit both good magnetic and ferroelectric properties. The spacing between ferromagnetic layers can be varied by adjusting the thickness of intermediate PZT layer. It is found that the strength of magnetostatic coupling has a great impact on magnetoelectric properties of composite thin films, i.e., the magnetoelectric voltage coefficient of composite thin film tends to increase with the decreasing of pacing between two neighboring CFO ferromagnetic layers as a result of magnetostatic coupling effect.  相似文献   

5.
Formation process of convexly shaped oxide micropatterns using hydrophobic-hydrophilic patterned surface has been examined, and this technique was applied to several oxide thin films such as SnO2, ZrO2, TiO2 and Al2O3. Hydrophobic-hydrophilic patterned surfaces were prepared on glass substrates by selective UV irradiation through a photomask on double-layered films of a very thin TiO2 gel film as the underlayer and a hydrolyzed fluoroalkyltrimethoxysilane layer as the top layer. Precursor solutions were then spin-coated on the hydrophobic-hydrophilic patterns, and the coated substrates were dried at room temperature. The micropatterns of oxides were very difficult to be formed on the hydrophobic-hydrophilic patterned surfaces from metal-alkoxides as a precursor solution, but convexly shaped micropatterns were formed on the hydrophilic regions of the pattern when metal chlorides or oxychlorides were used as starting materials. This patterning technique potentially has a wide variety of applications such as fabrication of micro-optical components and finely patterned transparent electrodes.  相似文献   

6.
Structural studies by X-ray crystallography have been carried out for a range of diorganoalkoxogallanes incorporating donor-functionalized ligands. The compounds [Et2Ga(μ-OR)]2 (1, R = CH2CH2NMe2; 2, R = CH(CH3)CH2NMe2; 3, C(CH3)2CH2OMe; 4, R = CH(CH2NMe2)2) adopt dimeric structures with a planar Ga2O2 ring, and each gallium atom is coordinated in a distorted trigonal bipyramidal geometry. Low pressure chemical vapor deposition (CVD) of 2 and 4 resulted in the formation of oxygen deficient gallium oxide thin films on glass. However, the reaction of Et3Ga and ROH (R = CH2CH2NMe2, CH(CH3)CH2NMe2, C(CH3)2CH2OMe, CH(CH2NMe2)2) in toluene under aerosol assisted (AA)CVD conditions afforded stoichiometric Ga2O3 thin films on glass. This CVD technique offers a rapid, convenient route to Ga2O3, which involves the in situ formation of diethylalkoxogallanes, of the type [Et2Ga(μ-OR)]2, the structures of which are described in this paper. The gallium oxide films were deposited at 450 °C and analyzed by scanning electron microscopy (SEM), X-ray powder diffraction, wavelength dispersive analysis of X-rays (WDX), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.  相似文献   

7.
Deposition of electrochromic niobium(V) oxide films from an acidic solution of niobium peroxo complexes on a transparent conducting cathode in the form of an SnO2 film on glass was studied. With an increase in the negative potential of the deposition of niobium(V) oxide films from a solution of niobium peroxo complexes at pH 2.5, the structure and composition of the films changed. A study of the electrochromic properties of Nb2O5 films revealed broadening of the bands in the electrochromic coloration spectrum with an increase in the negative potential of the deposition.  相似文献   

8.
Integrally skinned asymmetric polysulfone membranes were prepared from originally dense films inducing asymmetry by the formation of the porous layer adding to one side of the membranes chloroform and supercritical CO2 (SCCO2), and then allowing the SCCO2 expansion to occur. The influence of the chloroform/polysulfone mass ratio (g CH3Cl/g PSF), SCCO2 density and depressurization rate over the thickness of both the porous and the dense skin layers, the morphology of the porous support and the pure O2 and N2 permeability and selectivity performance were studied.The results show that it is possible to induce a very-controlled asymmetry in a dense film following the procedure described in this work and as expected, the thickness of the porous layer increases while the dense skin layer decreases as the chloroform/polysulfone mass ratio increases. Images of the porous layer show that the average-pore size decreases at high SCCO2 densities and slightly decreases with increasing the CO2 depressurization rates. The O2 and N2 permeability coefficients, measured at 35 °C and 2 bar, for the polysulfone asymmetric membranes are practically the same of those determined in dense films, suggesting that the dense skins are essentially defect-free of pinholes.  相似文献   

9.
Fluorine? tin oxide (FTO) nanostructure was developed on the surface of a glass plate using spray payroliziz method. A new electrochemical biosensor was fabricated based on a layer by layer process. In this process chitosan? Fe3O4 (CH? Fe3O4) nanocomposite film was prepared at the surface of FTO electrode by dip? coating method. In the next step, the glucose oxidase (GOx) was immobilized on the CH? Fe3O4/FTO nanocomposite electrode. The GOx/CH? Fe3O4/FTO bioelectrode has a linear range of 10–270 µM and a detection limit of 5 µM. The highest sensitivity was obtained at 1.2 µA mM?1 cm?2.  相似文献   

10.
The kinetics of growth of porous anodic alumina films in pure H2SO4, in mixtures of H2SO4 and Al2(SO4)3 and in Al(HSO4)3, NaHSO4 and KHSO4 electrolytes were studied. The latent physicochemical processes at the pore base surface/electrolyte interface, across the barrier layer, inside the metal/oxide interface and at the pore wall surface/electrolyte interface and their mechanisms were revealed. High field strength equations were formulated describing the ionic migrations from the pore base surface. These showed that, at constant current density and temperature, the inverse of the pore base square diameter depends linearly on the inverse of the H+ activity in the anodizing solution and that this diameter increases with H+ activity, in agreement with the experimental results. The mechanism of electrolyte anion incorporation inside the barrier layer and the real distribution of the anion concentration across both the barrier layer and pore walls were deduced. The effects of the different kinds and concentrations of the electrolyte anions and cations on both the above processes and their mechanisms were also examined. Electronic Publication  相似文献   

11.
Highly ordered LiCo0.5Mn0.5O2 nanowire arrays were prepared using porous anodic aluminum oxide (AAO) template from sol-gel solution containing Li(CH3COO), Co(CH3COO)2, and Mn(CH3COO)2. Electron microscope results showed that uniform length and diameter of LiCo0.5Mn0.5O2 nanowires were obtained, and the length and diameter of LiCo0.5Mn0.5O2 nanowires are dependent on the pore diameter and the thickness of the applied AAO template. X-ray diffraction and electron diffraction pattern investigations demonstrate that LiCo0.5Mn0.5O2 nanowires are a layered structure of LiCo0.5Mn0.5O2 crystal. X-ray photoelectron spectroscopy analysis indicates that the most closely resembling stoichiometric layered LiCo0.5Mn0.5O2 material has been obtained.  相似文献   

12.
Anodic oxide films were fabricated on Ti–10V–2Fe–3Al alloy in acid (H2SO4/H3PO4) and neutral environmental friendly (C4H4O6Na2) electrolytes. The morphology, roughness, crystalline structure of the anodic oxide film were characterized by using scanning electron microscopy, atomic force microscopy, Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The results showed that the oxide film fabricated in H2SO4/H3PO4 electrolyte had a porous structure and the thickness of the film was 3.5 µm. The oxide film fabricated in C4H4O6Na2 electrolyte presented a nonporous structure that sustained the evident microstructure of the substrate, and the thickness of the film was 6.0 µm. The surface average roughness values of the two types of films were 245 nm and 166 nm, respectively. The phase of the anodic oxide films consisted mainly of anatase and rutile. EIS results showed that the film fabricated in C4H4O6Na2 electrolyte had higher impedance of the outer layer, while the film fabricated in H2SO4/H3PO4 electrolyte had higher impedance of the inner layer. Moreover, we attempt to explain the differences in the anodizing kinetics, structure and electrochemical impedance of anodic oxide films by the different films growth processes in the two types of electrolytes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Vanadium dioxide (VO2) thin films were fabricated using a simple and novel sol–gel process in which V2O5 was used as the vanadium source; oxalic acid was used as the reducing agent; and polyvinyl alcohol was used as the film former to control the viscosity of the VO2 precursor solution and bond vanadium ions. The microstructure and surface morphology of VO2 films were studied by X-ray diffraction and scanning electron microscopy, respectively. The results showed that using polyvinyl alcohol forms porous nanostructure of VO2 films with a uniform grain size of ~25 nm. The measured optical reflectance shows well-defined phase transition as observed by an increase of reflectance upon heating above the transition temperature from ~11 to ~30 % at 1,100 nm. Upon cooling, the expected hysteresis is observed.  相似文献   

14.
The sol-gel method with ethanol as a solvent and fluoride ion as a catalyst was used to prepare polysiloxane xerogels containing both 3-mercaptopropyl and n-propyl groups in the surface layer. An increase in the relative amount of n-propyltriethoxysilane in the initial reaction solution was found to result in the formation of xerogels with developed porous structures, which was accompanied by an increase in the specific surface area from 370 to 550 m2/g; simultaneously, other porous structure parameters such as sorption volume and pore size exhibited a tendency to increase. Atomic-force microscopy was used to show that the xerogels synthesized comprised aggregates of mean size 30 nm. An analysis of the IR and 13C cross-polarization magic angle spinning NMR data led us to conclude that the surface layer of bifunctional xerogels contained not only 3-mercaptopropyl and n-propyl groups but also silanol groups, part of nonhydrolyzed alkoxy groups, and H-bonded water molecules. The 29Si cross-polarization magic angle spinning NMR spectra revealed the presence of structural units of the compositions T1 [(≡SiO)Si(OR’)2(CH2CH2CH3) and/or (≡SiO)Si(OR’)2(CH2)3SH, R’ = H, OCH3, or OC2H5], T2 [(≡SiO)2Si(OR’)(CH2CH2CH3) and (≡SiO)2Si(OR’)(CH2)3SH], and T3 [(≡SiO)3SiCH2CH2CH3 and (≡SiO)3Si(CH2)3SH] in the xerogels synthesized.  相似文献   

15.
By supporting platinum (Pt) and cadmium sulfide (CdS) nanoparticles on indium oxide (In2O3), we fabricated a CdS/Pt/In2O3 photocatalyst. Selective photoreduction of carbon dioxide (CO2) to methane (CH4) was achieved on CdS/Pt/In2O3 with electronic Pt−In2O3 interactions, with CH4 selectivity reaching to 100 %, which is higher than that on CdS/Pt/In2O3 without electronic Pt−In2O3 interactions (71.7 %). Moreover, the enhancement effect of electronic Pt-(metal-oxide) interactions on selective photoreduction of CO2 to CH4 also occurs by using other common metal oxides, such as photocatalyst supports, including titanium oxide, gallium oxide, zinc oxide, and tungsten oxide. The electronic Pt-(metal-oxide) interactions separate photogenerated electron-hole pairs and convert CO2 into CO2δ−, which can be easily hydrogenated into CH4 via a CO2δ−→HCOO*→HCO*→CH*→CH4 path, thus boosting selective photoreduction of CO2 to CH4. This offers a new way to achieve selective photoreduction of CO2.  相似文献   

16.
The xerogels, containing phosphonic acid groups ≡Si(CH2)2P(O)(OC2H5)2 in the surface layer of their particles, are synthesized by the sol-gel method (ethanol as a solvent and fluoride ion as a catalyst). It is shown that, when 2 : 1, 3 : 1, and 4 : 1 tetraethoxysilane/(diethylphosphatoethyl)triethoxysilane ratios are used, nonporous substances are formed, whereas, at 6 : 1, 8 : 1, and 10 : 1 ratios, the xerogels with highly porous structures are produced (the specific surface area is 505–534 m2/g, the sorption pore volume is 0.34–0.53 cm3/g, and the pore diameter is 3.6–4.6 nm).  相似文献   

17.
Aluminium was anodised in H2SO4, LiHSO4, NaHSO4, KHSO4, Mg(HSO4)2 and Al(HSO4)3 electrolytes. The kinetics of growth of porous anodic alumina films and of the pore wall oxide dissolution during anodisation was studied. Based on the derived kinetic parameters, suitable physicochemical processes in the barrier layer electrolyte interface controlling the anion incorporation in the barrier layer were suggested and relevant models were formulated. According to these processes Al3+ and H+ ions are rejected from the pore base surface in the attached double layer, where Al3+ ions are solvated, and are transferred to the pore filling solution. The strongly different mobilities of Al3+ and H+ and the necessary space negative charge density distribution in the double layer result in similar concentration distributions of Al3+ and anions inside it, which differ strongly from that of H+. These Al3+ and anion concentrations increase with decreasing mobility of the main cations in the solution which depends on their hydration enthalpy and transport mechanism. The concentration of incorporated anions inside both a thin surface layer of the barrier layer and the double layer vary similarly. For identical surface density and base diameter of pores the decrease of the above mobility reinforces anion incorporation.  相似文献   

18.
Novel fluorine-containing carbofunctional organosilicon monomers were synthesized: 3-pentafluorobenzylideneaminopropylethoxysilane (EtO)3Si(CH2)3N=CH-C6F5, N-3-methoxydiethoxysilylpropyltrifluoroacetamide (EtO)2(MeO)Si(CH2)3NHC(O)CF3, and 1,1,5-trihydrooctafluoroamyl N-3-triethoxysilylpropylaminopropanoate (EtO)3Si(CH2)3NH(CH2)2C(O)OCH2(CF2)3CHF2. Compositions for the formation of transparent thermally stable films were prepared from these monomers. The films have low absorbance intensity near 1550 nm, i.e., in the region of photosignal transmission of modern optical communication systems. The compositions can dissolve complexes with organofluorine ligands and produce transparent homogeneous films doped with rare-earth metals. The concentrations of the complexes in the matrices are 3.7–21.4 wt.% (metal concentrations are 0.6–3.7%). Fluorescence and fluorescence excitation spectra of the matrices and electronic absorption spectra of the doped films were studied. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1131–1138, May, 2005.  相似文献   

19.
The adsorption of carboxylic acids (formic, acetic, and pyruvic acid) from corresponding solutions in CH2Cl2 solvent on Al2O3 and TiO2 thin films has been studied by attenuated total reflection infrared spectroscopy. The metal‐oxide films were vapor‐deposited on a Ge internal reflection element, which was mounted into a specially designed flow cell. The system allowed in situ monitoring of the processes occurring at the solid‐liquid interface. The metal‐oxide films were characterized by X‐ray photoelectron spectroscopy, ellipsometry, and atomic force microscopy. Formic acid and acetic acid adsorbed predominantly as bridging species on alumina surfaces. Adsorbed free acids were not observed under a flow of neat solvent. Based on the position of the νAS(COO) and of the keto‐group stretching vibration of the pyruvate ion, pyruvic acid is proposed to coordinate to the Al2O3 surface in a monodentate fashion, whereas, on TiO2, a bidentate species is preferred. Comparison of the adsorption behavior on the vapor‐deposited alumina film and on an α‐Al2O3 layer deposited from a water suspension of the corresponding metal‐oxide powder indicated that pyruvic acid adsorbs in a similar mode, irrespective of the metal‐oxide deposition technique.  相似文献   

20.
Silica-based inorganic–organic hybrid thin films embedding the organically modified oxohafnium clusters (Hf4O2(OMc)12, OMc=OC(O)–C(CH3)=CH2) were obtained by photo-activated free radical copolymerisation of the methacrylate groups of the cluster with those of the pre-hydrolysed (methacryloxypropyl)trimethoxysilane (MAPTMS, (CH2=C(CH3)C(O)O)(CH2)3Si(OCH3)3). By this route, a covalent anchoring of the cluster to the forming silica network was achieved. Samples characterized by two different Si/Hf compositions (18:1, 5:1) were prepared. The surface and in-depth composition of the thin films were investigated through Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). XPS depth profiles performed on the thin layers evidenced a homogenous in depth distribution of the hafnium guest species within the whole silica films and sharp film-substrate interfaces. Broad band dielectric spectroscopy (BDS) measurements permitted to investigate the electric response of the obtained films in the frequency and temperature range of 40 Hz – 1 MHz and 0–160°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号