共查询到20条相似文献,搜索用时 0 毫秒
1.
In the title compound, germanium is penta‐coordinated and adopts a trigonal bipyramidal geometry. The (2‐thienyl)phenyl group and the nitrogen atom each occupy an apical position with a transannular N→Ge bond distances of 2.247(4) and 2.219(4) Å for the two independent molecules. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
2.
Alfonso Castieiras Isabel García-Santos Manuel Saa 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(7):891-903
The reaction of 2‐cyanopyridine with N‐phenylthiosemicarbazide afforded 2‐[amino(pyridin‐2‐yl)methylidene]‐N‐phenylhydrazine‐1‐carbothioamide (Ham4ph) and crystals of 4‐phenyl‐5‐(pyridin‐2‐yl)‐2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thione (pyph3NS, 1 , C13H10N4S). Crystals of methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl]sulfanyl}acetate (phpy2NS, 2 , C16H14N4O2S), derived from 1 , were obtained by the reaction of Ham4ph with chloroacetic acid, followed by the acid‐catalyzed esterification of the carboxylic acid with methyl alcohol. Crystals of bis(methanol‐κO)bis(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)zinc(II)/cadmium(II) hexabromidocadmate(II), [Zn0.76Cd0.24(C16H14N4O2S)2(CH3OH)2][Cd2Br6] or [Zn0.76Cd0.24(phpy2NS)2(MeOH)2][Cd2Br6], 3 , and dichlorido(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)mercury(II), [HgCl2(C16H14N4O2S)] or [Hg(phpy2NS)Cl2], 4 , were synthesized using ligand 2 and CdBr2 or HgCl2, respectively. The molecular and supramolecular structures of the compounds were studied by X‐ray diffractometry. The asymmetric unit of 3 is formed from CdBr3 and M(phpy2NS)(MeOH) units, where the metal centre M has a 76% occupancy of ZnII and 24% of CdII. The M2+ centre of the cation, located on a crystallographic inversion centre, is hexacoordinated and appears as a slightly distorted octahedral [MN4O2]2+ cation. The Cd centre of the anion is coordinated by two terminal bromide ligands and two bridging bromide ligands that generate [Cd2Br6]2? cadmium–bromide clusters. These clusters display crystallographic inversion symmetry forming two edge‐shared tetrahedra and serve as agents that direct the structure in the formation of supramolecular assemblies. In mononuclear complex 4 , the coordination geometry around the Hg2+ ion is distorted tetrahedral and comprises two chloride ligands and two N‐atom donors from the phpy2NS ligand, viz. one pyridine N atom and the other from triazole. In the crystal packing, all four compounds exhibit weak intermolecular interactions, which facilitate the formation of three‐dimensional architectures. Along with the noncovalent interactions, the structural diversity in the complexes can be attributed to the metal centre and to the coordination geometry, as well as to its ionic or neutral character. 相似文献
3.
Katherine A. Bussey Annie R. Cavalier Jennifer R. Connell Margaret E. Mraz Kayode D. Oshin Tomislav Pintauer Allen G. Oliver 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(7):526-533
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety. 相似文献
4.
Jos J. Campos‐Gaxiola Susana P. Arredondo Rea Ramn Corral Higuera Herbert Hpfl Adriana Cruz Enríquez 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(1):48-52
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM− (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA). 相似文献
5.
Monica Soto‐Monsalve Andrea Cabrera‐Espinoza Carlos D. Grande Richard F. D'Vries Manuel N. Chaur 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(7):631-635
Hydrazones exhibit a versatile chemistry and are of interest for their potential use as functional molecular systems capable of undergoing reversible changes of configuration, i.e. E/Z isomerization. The title compound, C12H12N4O, has an E configuration with respect to the hydrazone C=N bond. The crystal packing is formed by N—H...N and O—H...N hydrogen bonds that give a two‐dimensional layer structure and C—H...C interactions associated with layer stacking to produce the three‐dimensional supramolecular structure. These intermolecular interactions were analyzed and quantified by the Hirshfeld surface method and the two‐dimensional supramolecular arrangement was topologically simplified as a hcb network. 相似文献
6.
Shan Hou Qi‐Kui Liu Yan‐An Li Jian‐Ping Ma Yu‐Bin Dong 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(10):1108-1111
2,5‐Bis[4‐methyl‐3‐(pyridin‐3‐yl)phenyl]‐1,3,4‐oxadiazole (L), C26H20N4O, forms one‐dimensional chains via two types of intermolecular π–π interactions. In catena‐poly[[dichloridozinc(II)]‐μ‐2,5‐bis[4‐methyl‐3‐(pyridin‐3‐yl)phenyl]‐1,3,4‐oxadiazole], [ZnCl2(C26H20N4O)]n, synthesized by the combination of L with ZnCl2, the ZnII centres are coordinated by two Cl atoms and two N atoms from two L ligands. [ZnCl2L]n forms one‐dimensional P (plus) and M (minus) helical chains, where the L ligand has different directions of twist. The helical chains stack together via interchain π–π and C—H...π interactions. 相似文献
7.
Jairo Quiroga Jaime Glvez Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(8):915-919
In the molecules of both methyl (1RS,3SR,3aRS,6aSR)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxo‐5‐phenyloctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H24N4O4, (I), and methyl (1RS,3SR,3aRS,6aSR)‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxooctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H23ClN4O4, (II), the two rings of the pyrrolopyrrole fragment are both nonplanar, with conformations close to half‐chair forms. The overall conformations of the molecules of (I) and (II) are very similar, apart from the orientation of the ester function. The molecules of (I) are linked into sheets by a combination of an N—H...π(pyrrole) hydrogen bond and three independent C—H...O hydrogen bonds. The molecules of (II) are also linked into sheets, which are generated by a combination of an N—H...N hydrogen bond and two independent C—H...O hydrogen bonds, weakly augmented by a C—H...π(arene) hydrogen bond. 相似文献
8.
Andranne Bolduc Stphane Dufresne W. G. Skene 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(10):1196-1199
The title compound, C16H12N4S, forms a three‐dimensional layered network structure via intermolecular hydrogen bonding and π‐stacking. The azomethine molecule adopts the thermodynamically stable E regioisomer and the pyridine substituents are antiperiplanar. The mean planes of the pyridine rings and the azomethine group to which they are connected are twisted by 27.27 (5) and 33.60 (5)°. The electrochemical energy gap of 2.3 eV based on the HOMO–LUMO energy difference is in agreement with the spectroscopically derived value. 相似文献
9.
Qiang Li Hui‐Ting Wang Lin Zhou 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(2):93-96
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network. 相似文献
10.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(11):1017-1023
With the rapid development of modern industry, water pollution has become an intractable environmental issue facing humans worldwide. In particular, the organic dyes discharged into natural water from dyestuffs, dyeing and the textile industry are the main sources of pollution in wastewater. To eliminate these types of pollutants, degradation of organic contaminants through a photocatalytic technique is an effective methodology. To exploit more crystalline photocatalysts for the degradation of organic dyes, two coordination polymers, namely catena‐poly[[(3,5‐dicarboxybenzene‐1‐carboxylato‐κO 1)silver(I)]‐μ‐trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene‐κ2N :N ′], [Ag(C9H5O6)(C12H10N2)]n or [Ag(H2BTC)(3,4′‐bpe)]n , (I), and poly[[(μ3‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ4O 1,O 1′:O 3:O 3)[μ‐trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene‐κ2N :N′ ]cadmium(II)] monohydrate], {[Cd(C9H4O6)(C12H10N2)]·H2O}n or {[Cd(HBTC)(3,4′‐bpe)]·H2O}n , (II), have been prepared by the hydrothermal reactions of benzene‐1,3,5‐tricarboxylic acid (H3BTC) and trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene (3,4′‐bpe) in the presence of AgNO3 or Cd(NO3)2·4H2O, respectively. These two title compounds have been structurally characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction. In (I), the AgI ions and organic ligands form a one‐dimensional coordination chain, and adjacent coordination chains are connected by Ag…O interactions to give rise to a two‐dimensional supramolecular network. Each two‐dimensional network is entangled with other equivalent networks to generate an infrequent interlocked 2D→3D (2D and 3D are two‐ and three‐dimensional, respectively) supramolecular framework. In (II), the CdII ions are bridged by the HBTC2− and 3,4′‐bpe ligands, which lie across centres of inversion, to give a two‐dimensional coordination network. The thermal stabilities and photocatalytic properties of the title compounds have also been studied. 相似文献
11.
Svitlana V. Shishkina Irina S. Konovalova Pavlo V. Trostianko Anna O. Geleverya Sergiy M. Kovalenko Natalya D. Bunyatyan 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(11):1541-1553
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies. 相似文献
12.
Ana María Atria Maria Teresa Garland Ricardo Baggio 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(6):541-546
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups. 相似文献
13.
Fang Liu Jing‐Jing Zhang Ming‐Yuan Lei Qing‐Fu Zhang 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(9):834-838
The title CdII compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O and 5‐(pyridin‐4‐yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2− ligands, four coordinated water molecules and five isolated water molecules. One of the CdII cations adopts a six‐coordinate octahedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxylate group of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. The second CdII cation adopts a seven‐coordinate pentagonal–bipyramidal coordination geometry involving four O atoms from two bidentate chelating carboxylate groups of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. Each L2− ligand bridges three CdII cations and, likewise, each CdII cation connects to three L2− ligands, giving rise to a two‐dimensional graphite‐like 63 layer structure. These two‐dimensional layers are further linked by O—H...O hydrogen‐bonding interactions to form a three‐dimensional supramolecular architecture. The photoluminescence properties of the title compound were also investigated. 相似文献
14.
Xiang‐Wen Wu Dong Zhang Jian‐Ping Ma 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(5):522-527
Two different one‐dimensional supramolecular chains with CoII cations have been synthesized based on the semi‐rigid ligand 2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline (L), obtained by condensation of 2‐(1H‐benzimidazol‐2‐yl)quinoline and 4‐(chloromethyl)pyridine hydrochloride. Starting from different CoII salts, two new compounds have been obtained, viz. catena‐poly[[[dinitratocobalt(II)]‐μ‐2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline] dichloromethane monosolvate acetonitrile monosolvate], {[Co(NO3)2(C22H16N4)]·CH2Cl2·CH3CN}n, (I) and catena‐poly[[[dichloridocobalt(II)]‐μ‐2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline] methanol disolvate], {[CoCl2(C22H16N4)]·2CH3OH}n, (II). In (I), the CoII centres lie in a distorted octahedral [CoN3O3] coordination environment. {Co(NO3)2L}n units form one‐dimensional helical chains, where the L ligand has different directions of twist. The helical chains stack together via interchain π–π interactions to form a two‐dimensional sheet, and another type of π–π interaction further connects neighbouring sheets into a three‐dimensional framework with hexagonal channels, in which the acetonitrile molecules and disordered dichloromethane molecules are located. In (II), the CoII centres lie in a distorted trigonal–bipyramidal [CoCl2N3] coordination environment. {CoCl2L}n units form one‐dimensional chains. The chains interact via C—H...π and C—H...Cl interactions. The result is that two‐dimensional sheets are generated, which are further linked into a three‐dimensional framework via interlayer C—H...Cl interactions. When viewed down the crystallographic b axis, the methanol solvent molecules are located in an orderly manner in wave‐like channels. 相似文献
15.
Yelder A. Castillo Luis F. Zapata Jorge Trilleras Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(1):50-54
The title compound, C23H17N3O4S, crystallizes with Z′ = 3 in the space group P. Two of the three independent molecules are broadly similar in terms of both their molecular conformations and their participation in hydrogen bonds, but the third molecule differs from the other two in both of these respects. The molecules are linked by a combination of N—H...O, N—H...N, C—H...O, C—H...N and C—H...π(arene) hydrogen bonds to form a continuous three‐dimensional framework structure within which a centrosymmetric six‐molecule aggregate can be identified as a key structural element. 相似文献
16.
Zhi-Liang Zhang Jia-Cheng Liu 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(5):389-392
The design and synthesis of new organic lgands is important to the rapid development of coordination polymers (CPs). However, CPs based on asymmetric ligands are still rare, mainly because such ligands are usually expensive and more difficult to synthesize. The new asymmetric ligand 4‐[4‐(1H‐imidazol‐1‐yl)phenyl]pyridine (IPP) has been used to construct the title one‐dimensional coordination polymer, catena‐poly[[[aqua{4‐[4‐(1H‐imidazol‐1‐yl‐κN3)phenyl]pyridine}cadmium(II)]‐μ‐5‐hydroxybenzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3] monohydrate], {[Cd(C8H4O5)(C14H11N3)2(H2O)]·H2O}n, under hydrothermal reaction of IPP with CdII in the presence of 5‐hydroxyisophthalic acid (5‐OH‐H2bdc). The CdII cation is coordinated by two N atoms from two distinct IPP ligands, three carboxylate O atoms from two different 5‐OH‐bdc2− dianionic ligands and one water O atom in a distorted octahedral geometry. The cationic [Cd(IPP)2]2+ nodes are linked by 5‐OH‐bdc2− ligands to generate a one‐dimensional chain. These chains are extended into a two‐dimensional layer structure via O—H…O and O—H…N hydrogen bonds and π–π interactions. 相似文献
17.
The centrosymmetric cation {[(HOOCCH2PPh2)]2(CH2)4}2+ adopts an extended conformation. The phosphorus atom shows a tetrahedral coordination and each O? H of the carboxylic group is hydrogen bonded to a bromide ion. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
18.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(5):382-392
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz− entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII). 相似文献
19.
Satish Shantaram Bhat Naveen Shivalingegowda Vidyanand Krishna Revankar Vitthal Ajinath Kawade Ray J. Butcher Neratur Krishnappagowda Lokanath 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(5):496-503
Two one‐dimensional (1D) coordination polymers (CPs), namely catena‐poly[[[aqua(2,2′‐bipyridine‐κ2N,N′)(nitrato‐κO)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C10H8N2)(C13H14N2)(H2O)]·NO3}n ( 1 ), and catena‐poly[[[aqua(nitrato‐κO)(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C12H8N2)(C13H14N2)(H2O)]·NO3}n ( 2 ), have been synthesized using [Cu(NO3)(NN)(H2O)2]NO3, where NN = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen), as a linker in a 1:1 molar ratio. The CPs were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray structure determination. The 1,3‐bis(pyridin‐4‐yl)propane (dpp) ligand acts as a bridging ligand, leading to the formation of a 1D polymer. The octahedral coordination sphere around copper consists of two N atoms from bpy for 1 or phen for 2 , two N atoms from dpp, one O atom from water and one O atom from a coordinated nitrate anion. Each structure contains two crystallographically independent chains in the asymmetric unit and the chains are linked via hydrogen bonds into a three‐dimensional network. 相似文献
20.
The centrosymmetric {[(HOOCCH2PPh2)]2(CH2)4}2+ cation adopts an extended conformation in which the phosphorus center adopts a tetrahedral geometry. O? H···O and C? H···O hydrogen bonding interactions expand this structure to form a two‐dimensional layered architecture. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献