首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterization of two new 1,3,5‐triazines containing 2‐(aminomethyl)‐1H‐benzimidazole hydrochloride as a substituent are reported, namely, 2‐{[(4,6‐dichloro‐1,3,5‐triazin‐2‐yl)amino]methyl}‐1H‐benzimidazol‐3‐ium chloride, C11H9Cl2N6+·Cl? ( 1 ), and bis(2,2′‐{[(6‐chloro‐1,3,5‐triazine‐2,4‐diyl)bis(azanediyl)]bis(methylene)}bis(1H‐benzimidazol‐3‐ium)) tetrachloride heptahydrate, 2C19H18ClN92+·4Cl?·7H2O ( 2 ). Both salts were characterized using single‐crystal X‐ray diffraction analysis and IR spectroscopy. Moreover, the NMR (1H and 13C) spectra of 1 were obtained. Salts 1 and 2 have triclinic symmetry (space group P) and their supramolecular structures are stabilized by hydrogen bonding and offset π–π interactions. In hydrated salt 2 , the noncovalent interactions yield pseudo‐nanotubes filled with chloride anions and water molecules, which were modelled in the refinement with substitutional and positional disorder.  相似文献   

2.
The structure of the new salt 1‐(o‐tolyl)biguanidium chloride, C9H14N5+·Cl?, has been determined by single‐crystal X‐ray diffraction. The salt crystallizes in the monoclinic space group C2/c. In this structure, the chloride and biguanidium hydrophilic ions are mostly connected to each other via N—H…N and N—H…Cl hydrogen bonds to form layers parallel to the ab plane around y = and y = . The 2‐methylbenzyl groups form layers between these layers around y = 0 and y = , with the methyl group forming C—H…π interactions with the aromatic ring. Intermolecular interactions on the Hirshfeld surface were investigated in terms of contact enrichment and electrostatic energy, and confirm the role of strong hydrogen bonds along with hydrophobic interactions. A correlation between electrostatic energy and contact enrichment is found only for the strongly attractive (N—H…Cl?) and repulsive contacts. Electrostatic energies between ions reveal that the interacting biguanidium cation pairs are repulsive and that the crystal is maintained by attractive cation…Cl? dimers. The vibrational absorption bands were identified by IR spectroscopy.  相似文献   

3.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

4.
The carboxylic acid group is an example of a functional group which possess a good hydrogen‐bond donor (–OH) and acceptor (C=O). For this reason, carboxylic acids have a tendency to self‐assembly by the formation of hydrogen bonds between the donor and acceptor sites. We present here the crystal structure of N‐tosyl‐l ‐proline (TPOH) benzene hemisolvate {systematic name: (2S)‐1‐[(4‐methylbenzene)sulfonyl]pyrrolidine‐2‐carboxylic acid benzene hemisolvate}, C12H15NO4S·0.5C6H6, (I), in which a cyclic R22(8) hydrogen‐bonded carboxylic acid dimer with a strong O—(H)…(H)—O hydrogen bond is observed. The compound was characterized by single‐crystal X‐ray diffraction and NMR spectroscopy, and crystallizes in the space group I2 with half a benzene molecule and one TPOH molecule in the asymmetric unit. The H atom of the carboxyl OH group is disordered over a twofold axis. An analysis of the intermolecular interactions using the noncovalent interaction (NCI) index showed that the TPOH molecules form dimers due to the strong O—(H)…(H)—O hydrogen bond, while the packing of the benzene solvent molecules is governed by weak dispersive interactions. A search of the Cambridge Structural Database revealed that the disordered dimeric motif observed in (I) was found previously only in six crystal structures.  相似文献   

5.
The polymorphic study of 3‐(3‐phenyl‐1H‐1,2,4‐triazol‐5‐yl)‐2H‐1‐benzopyran‐2‐one, C17H11N3O2, was performed due to its potential biological activity and revealed three polymorphic modifications in the triclinic space group P, the monoclinic space group P21 and the orthorhombic space group Pbca. These polymorphs have a one‐column layered type of crystal organization. The strongest interactions between the molecules of the studied structures is stacking between π‐systems, while N—H…N and C—H…O hydrogen bonds link stacked columns forming layers as a secondary basic structural motif. C—H…π hydrogen bonds were observed between neighbouring layers and their role is the least significant in the formation of the crystal structure. Packing differences between the polymorphic modifications are minor and can be identified only using an analysis based on a comparison of the pairwise interaction energies.  相似文献   

6.
The energetic ionic salt bis(1‐aminoguanidin‐2‐ium) 5,5′‐[1,2,4,5‐tetrazine‐3,6‐diylbis(azanediyl)]bis(1H‐1,2,3,4‐tetrazol‐1‐ide) dihydrate, 2CH7N4+·C4H2N142−·2H2O, (I), with a high nitrogen content, has been synthesized and examined by elemental analysis, Fourier transform IR spectrometry, 1H NMR spectroscopy and single‐crystal X‐ray crystallography. Compound (I) crystallizes in the monoclinic space group P 21/c with two water molecules. However, the water molecules are disordered about an inversion centre and were modelled as half‐occupancy molecules in the structure. The crystal structure reveals a three‐dimensional network of molecules linked through N—H…N, N—H…O, O—H…N and O—H…O hydrogen bonds. Thermal decomposition was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The exothermic peak temperature is 509.72 K, which indicates that hydrated salt (I) exhibits good thermal stability. Non‐isothermal reaction kinetic parameters were calculated via both the Kissinger and the Ozawa methods to yield activation energies of E k = 239.07 kJ mol−1, lgA k = 22.79 s−1 and E O = 235.38 kJ mol−1 for (I). Additionally, the thermal safety was evaluated by calculating critical temperatures and thermodynamic values, viz. T SADT, T TIT, T b, ΔS , ΔH and ΔG . The results reveal that (I) exhibits good thermal safety compared to other ion salts of 3,6‐bis[(1H‐1,2,3,4‐tetrazol‐5‐yl)amino]‐1,2,4,5‐tetrazine (BTATz).  相似文献   

7.
Thermal analysis, X‐ray diffraction and temperature‐dependent IR spectroscopy were used to study the dehydration process of crystalline dl ‐phenylglycinium trifluoromethanesulfonate monohydrate (PGTFH), C8H10NO2+·CF3SO3?·H2O. PGTFH dehydrates in one step centred at 353 K and crystallizes in the monoclinic space group C2/c, whereas the anhydrous compound (PGTF) crystallizes in the triclinic space group P. The dehydration process in PGTFH is preceded by a weakening of both the noncovalent aromatic–aromatic interactions and the packing contacts. This process is accompanied by the breakage of medium‐strength O—H…O hydrogen bonds between ions inside layers and a reorganization of the ions within the layers. This reorganization results in the formation of two different ion pairs (dl ‐phenylglycinium trifluoromethanesulfonate) and the formation of a new hydrogen‐bond network. The dehydration process does not destroy the nature of the crystal structure. Both crystals, i.e. hydrated and anhydrous, have a layered structure, although the layers of each crystal are arranged somewhat differently.  相似文献   

8.
The reactivities of two 20‐membered macrocyclic ligands, each containing two N‐heterocyclic carbene (NHC) and two amine groups, towards [IrCl(COD)]2 (COD is cycloocta‐1,5‐diene) were investigated. Macrocycles containing imidazolin‐2‐ylidene groups formed the monometallic complex [(1,2,5,6‐η)‐cycloocta‐1,5‐diene](5,16‐dibenzyl‐1,5,9,12,16,20‐hexaazatricyclo[18.2.1.19,12]tetracosa‐10,21‐dien‐21,22‐diylidene)iridium(I) bromide dichloromethane monosolvate, [Ir(C8H12)(C32H42N6)]Br·CH2Cl2, 2a . The structure of iridium complex 2a at 100 K has triclinic P symmetry. The ligand in 2a coordinates to the Ir center through the NHC moieties in a cis fashion. Additionally, the ligand adopts an umbrella‐like structure that appears to envelope the Ir center. The structure displays C—H…Br interactions. Macrocycles containing benzimidazolin‐2‐ylidene groups formed the bimetallic complex [μ‐5,20‐dibenzyl‐1,5,9,16,20,24‐hexaazapentacyclo[22.6.1.19,16.010,15.025,30]dotriaconta‐10(15),11,13,25(30),26,28‐hexaene‐31,32‐diylidene]bis{bromido[(1,2,5,6‐η)‐cycloocta‐1,5‐diene]iridium(I)}, [Ir2Br2(C8H12)2(C40H46N6)], 2b . The structure of complex 2b at 100 K has orthorhombic Pbca symmetry. Each NHC moiety in 2b coordinates in a monodentate fashion to an Ir(COD) fragment. The structure exhibits disorder of the main molecule. This disorder is found in the portion of the macrocycle containing an amine group. This structure also displays C—H…Br interactions. Finally, the structure of the hexafluorophosphate salt of the imidazolin‐2‐ylidene‐containing macrocycle, namely 5,16‐dibenzyl‐1λ5,5,9,12λ5,16,20‐hexaazatricyclo[18.2.1.19,12]tetracosa‐1(23),10,12(24),21‐tetraene‐1,12‐diium bis(hexafluorophosphate), C32H44N62+·2PF6?, 1c , was determined. The structure of macrocycle 1c at 100 K has triclinic P symmetry and was found to contain C—H…F interactions.  相似文献   

9.
In an attempt to synthesize a new pyrimidine complex of copper(H) in a solution reaction of CuBr2 with 2,2‘-bis(hexahydropydmidine) and hydro-chloric acid, we unexpectedly obtained a bright yellow chip-like crystal of CuCl4(H2tn) [H2tn=(H3NCH2CH2CH2NH3)^2 ]. Its structure was determined by single-crystal X-ray diffraction analysis. The crystal belongs to orthorhombic system, space group Pnma, with cell parameters: a=0.7216(2)nm, b=1.8308(6)nm, c=0.7553(3)nm, V=0.9953(6)nm^3, Z=4, F(000)=564, Mr=281.49, Dc=1.879 g/cm^3. u(Mo Ka)=3.204 mm^-1, R1=0.0248, wR2=0.0575. The analysis of the crystal structure indicates that the complex has a three-dimensional network structure, which is formed by hydrogen bonds and electrostatic interaction.  相似文献   

10.
It is possible that fluorous compounds could be utilized as directing forces in crystal engineering for applications in materials chemistry or catalysis. Although numerous fluorous compounds have been used for various applications, their structures in the solid state remains a lively matter for debate. The reaction of 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridine with HX (X = I or Cl) yielded new fluorous ponytailed pyridinium halide salts, namely 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium iodide, C8H9F3NO+·I, (1), and 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium chloride, C8H9F3NO+·Cl, (2), which were characterized by IR spectroscopy, multinuclei (1H, 13C and 19F) NMR spectroscopy and single‐crystal X‐ray diffraction. Structure analysis showed that there are two types of hydrogen bonds, namely N—H…X and C—H…X. The iodide anion in salt (1) is hydrogen bonded to three 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium cations in the crystal packing, while the chloride ion in salt (2) is involved in six hydrogen bonds to five 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium cations, which is attributed to the smaller size and reduced polarizability of the chloride ion compared to the iodide ion. In the IR spectra, the pyridinium N—H stretching band for salt (1) exhibited a blue shift compared with that of salt (2).  相似文献   

11.
Two novel one‐ and two‐dimensional network structure bismuth(III) complexes with N, N‐di(2‐hydroxylethyl)‐aminodithiocarboxylate, {Bi[S2CN(C2H4OH)2]2[1, 10‐Phen]2(NO3)}·3H2O (1) and (Bi[S2CN(C2H4OH)2]3)2 (2) were synthesized. Their crystal and molecular structures were determined by X‐ray single crystal diffraction analysis. The crystal 1 belongs to monoclinic system with space group C2/c, a=1.6431(7) nm, b=2.4323(10) nm, c= 1.2646(5) nm, β=126. 237(5), Z=4, V=4.076(3) nm3, Dc=1.757 Mg/m3, μ=4.598 mm?1, F(000)=2156, R= 0.0211, wR=0.0369. The structure shows a distorted square antiprism configuration with eight‐coordination for the central Bi atom. The one‐dimensional chain structure was formed by H‐bonding interaction between hydroxyl group of N, N‐di(2‐hydroxylethyl)aminodithiocarboxylate ligands and crystal water. The crystal 2 belongs to monoclinic system with space group p2(1)/c, a= 1.1149(4) nm, b=2.1274(8) nrn, c=2.2107(8) nm, β=98.325(8)°, 2=4, V=5. 188(3) nm3, Dc=1.920 Mg/m3, μ=7.315 mm?1, F(000)=2944, R=0.0565, wR=0.0772. The structure shows a distorted square antiprism configuration with eight‐coordination for the central Bi atoms. The two‐dimensional network structure was formed by H‐bonding interaction between adjacent molecules.  相似文献   

12.
The crystal structure, Hirshfeld surface analysis and spectroscopic analysis of a new polyoxometalate (POM) compound, namely, nonakis(2‐methoxyaniline) bis(diphosphopentamolybdate) trihydrate, (C7H9NO)9[P2Mo5O23]2·3H2O, is reported. The title compound was synthesized using the solution method and was structurally characterized by single‐crystal X‐ray diffraction, which revealed P symmetry. A study of the intermolecular interactions using Hirshfeld surface analysis confirmed that the hydrogen‐bonding interactions play the dominant role in the stability of the crystal structure. The refinement was complicated by extensive disorder affecting 11 of the 16 ions and molecules in the asymmetric unit. IR and UV–Vis spectroscopic techniques were used to identify the vibrational modes and to classify this compound as an insulator.  相似文献   

13.
尹汉东  王传华  马春林  王勇 《中国化学》2002,20(12):1608-1611
IntroductionOrganotin(IV)derivativesofcarboxylicacidwereextensivelystudiedduetotheirbiologicalactivities .1 5Inrecentyearsmoreandmorereportsonthesynthesis ,anti tumouractivities ,biocidalactivities ,antibioticactivitiesandstructuralelucidationofvariousorgan…  相似文献   

14.
The synthesis and crystal structures of two new rhenium(I) complexes obtained utilizing benzhydroxamic acid (BHAH) and 3‐hydroxyflavone (2‐phenylchromen‐4‐one, FlavH) as bidentate ligands, namely tetraethylammonium fac‐(benzhydroxamato‐κ2O,O′)bromidotricarbonylrhenate(I), (C8H20N)[ReBr(C7H6NO2)(CO)3], 1 , and fac‐aquatricarbonyl(4‐oxo‐2‐phenylchromen‐3‐olato‐κ2O,O′)rhenium(I)–3‐hydroxyflavone (1/1), [Re(C15H9O3)(CO)3(H2O)]·C15H10O3, 3 , are reported. Furthermore, the crystal structure of free 3‐hydroxyflavone, C15H10O3, 4 , was redetermined at 100 K in order to compare the packing trends and solid‐state NMR spectroscopy with that of the solvate flavone molecule in 3 . The compounds were characterized in solution by 1H and 13C NMR spectroscopy, and in the solid state by 13C NMR spectroscopy using the cross‐polarization magic angle spinning (CP/MAS) technique. Compounds 1 and 3 both crystallize in the triclinic space group P with one molecule in the asymmetric unit, while 4 crystallizes in the orthorhombic space group P212121. Molecules of 1 and 3 generate one‐dimensional chains formed through intermolecular interactions. A comparison of the coordinated 3‐hydroxyflavone ligand with the uncoordinated solvate molecule and free molecule 4 shows that the last two are virtually completely planar due to hydrogen‐bonding interactions, as opposed to the former, which is able to rotate more freely. The differences between the solid‐ and solution‐state 13C NMR spectra of 3 and 4 are ascribed to inter‐ and intramolecular interactions. The study also investigated the potential labelling of both bidentate ligands with the corresponding fac99mTc‐tricarbonyl synthon. All attempts were unsuccessful and reasons for this are provided.  相似文献   

15.
Bis (1, 5‐diamino‐4‐methyl‐tetrazolium) azotetrazolate ( BMDATZT ) was synthesized with high yield in this work. The yield is 97.46%. The structure was characterized by IR, 1H NMR, and MS. The single crystal of BMDATZT?2H2O was first cultivated. The heat of formation, detonation pressure, and detonation velocity were first calculated. The crystalline density of BMDATZT?2H2O is 1.573 g/cm3. BMDATZT has high detonation pressure and detonation velocity (P =25.06 GPa, D = 7.805 km s?1), which are higher than those of 2,4,6‐Trinitrotoluene (TNT). Its thermal and mechanical sensitivities are moderate. Therefore, it is a kind of insensitive nitrogen‐rich energetic ionic salt with good performance, and it has potential application prospect in gas generating agent, explosive and solid propellant.  相似文献   

16.
Cross‐conjugated quinoid betaines 4 (2,5‐bis(alkoxycarbonyl)‐3,6‐dioxo‐4‐(1‐pyridinium‐1‐yl)cyclohexa‐1,4‐dien‐1‐olates; Liebermann betaines) were synthesized from 2,5‐dichloro‐3,6‐dioxocyclohexa‐1,4‐diene‐1,4‐dicarboxylates ( 2 ) and pyridines in acetone containing H2O. Their structure was secured by NMR spectroscopy and by X‐ray diffraction analysis of 4f (alkoxy = EtO, pyridine = 4‐Me2N–C5H4N). Betaines 4 show comparatively high reactivity towards nucleophiles as a consequence of their cross‐conjugated character. Betaine 4a and hydroxy‐3,4‐methylenedioxybenzene (sesamol) condense to give a pyridinium quinolate salt 14 which has a bifurcate H‐bond from a pyridinium N+–H donor to both carbonyl (C=O) and olate (C–O) acceptors in the solid state. Betaine 4b hydrolyzes in aqueous solution to give diethyl 2,5‐dihydroxy‐3,6‐dioxocyclohexa‐1,4‐diene‐1,4‐dicarboxylate ( 11 ) as a pyridinium salt, or as polymeric zinc(II) complex of the dianion of 11 in the presence of ZnCl2. Dihydroxyquinone 11 was analytically differentiated from its independently prepared hydroquinone form, diethyl 2,3,5,6‐tetrahydroxyterephthalate ( 12 ), by NMR analysis in solution and X‐ray crystal structure determination of both compounds.  相似文献   

17.
The crystal structure of the free base of the antidiabetic drug alogliptin [systematic name: 2‐({6‐[(3R)‐3‐aminopiperidin‐1‐yl]‐3‐methyl‐2,4‐dioxo‐1,2,3,4‐tetrahydropyrimidin‐1‐yl}methyl)benzonitrile], C18H21N5O2, displays a two‐dimensional N—H...O hydrogen‐bonded network. It contains two independent molecules, which have the same conformation but differ in their hydrogen‐bond connectivity. In the crystal structure of the benzoate salt (systematic name: (3R)‐1‐{3‐[(2‐cyanophenyl)methyl]‐1‐methyl‐2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidin‐4‐yl}piperidin‐3‐aminium benzoate), C18H22N5O2+·C7H5O2, the NH3+ group of the cation is engaged in three intermolecular N—H...O hydrogen bonds to yield a hydrogen‐bonded layer structure. The benzoate salt and the free base differ fundamentally in the conformations of their alogliptin moieties.  相似文献   

18.
The crystal structure of cesium phenylacetylide, CsC2C6H5, was solved and refined from synchrotron powder diffraction data (Pbca, Z = 8). Each Cs+ cation is coordinated by five ligands: four acetylide groups coordinate side‐on and one end‐on. A similar arrangement is found in the crystal structure of NaC2H (P4/nmm, Z = 2). There is a group‐subgroup relationship between both structures. Most importantly, the crystal structure of CsC2C6H5 could only be solved with the help of synchrotron data, as the very good peak:noise ratio allowed the assignment of several very weak reflections, which finally led to the correct space group, in which a structural solution was possible using direct space methods.  相似文献   

19.
The prodrug cloxazolam [systematic name: 13‐chloro‐2‐(2‐chlorophenyl)‐3‐oxa‐6,9‐diazatricyclo[8.4.0.02,6]tetradeca‐1(10),11,13‐trien‐8‐one], C17H14Cl2N2O2, crystallizes in the triclinic space group P, with four chemically identical independent molecules in the asymmetric unit. However, in order to facilitate the analysis of the striking pseudosymmetry relating the four independent molecules, the structure has been analysed and reported in the nonconventional centred B space‐group setting. Pseudosymmetry is an eminently local property, valid only in the realm of the unit‐cell boundary and not propagating to the whole crystal structure. It has been analyzed using the MP procedure described in the preceding article [Baggio (2019). Acta Cryst. C 75 , 837–850]. The molecules consist of a rigid core made up of three rings (five‐, six‐ and seven‐membered) and an extra six‐membered ring joined to the latter group by a single C—C bond, together with a clamping intramolecular C—H…O interaction preventing free rotation and providing additional rigidity. The four molecules in the asymmetric unit pair into dimers with almost exact twofold pseudosymmetry, further linked into (001) slabs as the building bricks of the structure. Interpenetration of slabs finally leads to a three‐dimensional structure of unusual compactness for an organic structure, with a Kitaigorodskii packing index of ca 0.71.  相似文献   

20.
A new pillard crystal packing of a hydrated [Zn(PABA)2(H2O)]·H2O (PABA = p‐aminobenzoate) ( 1 ) was obtained starting from a layered zinc hydroxide with PABA as organic substrate. Compound 1 was characterized in the solid state by crystal structure analysis and in solution by 13C‐ and 1H‐NMR spectroscopy. In contrast to the known hydrate of [Zn(PABA)2]·1.5H2O the water molecules of crystal packing of 1 are involved in the coordination sphere of the zinc atoms, forming hydrogen bonding interactions between amino groups of PABA and water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号