首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Atmospheric and in‐water solar radiation, including UVR‐B, UVR‐A and PAR, as well as chromophoric dissolved organic matter absorption [aCDOM(λ)] in surface waters were monthly measured from November 2007 to December 2008 at a coastal station in the Northwestern Mediterranean Sea (Bay of Marseilles, France). Our results showed that the UVR‐B/UVR–A ratio followed the same trend in the atmosphere and at 2 m depth in the water (P < 0.0001) with an increase (eight‐fold higher) during summer. The low diffuse attenuation coefficients for downward irradiance [Kd(λ)] of UVR‐B, UVR‐A and PAR indicated that the waters were highly transparent throughout the year. The relationships between aCDOM(λ) and Kd(λ) in this oligotrophic system suggested that CDOM contributed to UVR attenuation in the UVA domain, but also played a significant role in PAR attenuation. Mean UV doses received in the mixed layer depth were higher by a factor 1.4–33 relative to doses received at fixed depths (5 and 10 m) in summer (stratified period), while the inverse pattern was found in winter (mixing period). This shows the importance of taking into account the vertical mixing in the evaluation of UVR effects on marine organisms.  相似文献   

2.
Global UV radiation was measured with a portable multichannel filter radiometer at the surface and underwater in a high mountain lake (2417 m above sea level) of the Austrian Alps during 16 days in summer 1995. During this period, total column ozone values that changed only by 34 Dobson units explained a significant part of the variability in UVB radiation at 305 nm as indicated by the negative correlation with the ratio 305:340 nm (rs= -0.810, P < 0.01). High radiation at the surface combined with high water transparency allowed substantial UVB radiation to reach the bottom of this lake. The diffuse attenuation coefficient for downward irradiance at 305 nm changed within 2 weeks from 0.24 m-1 (10% at 9.6 m depth) to 0.32 m-1 (10% at 7.2 m depth). This change in attenuation was related to the development of phytoplankton after the ice break-up as indicated by a six-fold increase in chlorophyll-a concentrations during this period. Our results suggest that phytoplankton and/ or phytoplankton-derived organic substances are important for the UV attenuation in this oligotrophic lake.  相似文献   

3.
The high content in nutrients of freshwater outflows induces highly productive and buoyant plumes spreading over marine waters (MW). As a consequence, the growth of organisms developing in these low‐salinity waters (LSW) might be potentially affected by UV‐R (280–400 nm). This study investigated the penetration of UV‐R and its impact on net community production (NCP) and bacterial protein (BPROTS) and DNA (BDNAS) synthesis in mesotrophic‐LSW formed from the Rhône River and in oligotrophic MW of the Northwestern Mediterranean Sea (Gulf of Lions) in May 2006. High concentrations of chlorophyll a (up to 8 μg L?1) measured in the LSW (<37.8 psu, 0–10 m) were the main factor influencing the diffuse attenuation coefficients (Kd) of both UV‐R and photosynthetically active radiation (PAR). The mean ratio of the Kd measured between the LSW and the MW increased with wavelength from 2.4 at 305 nm to 2.9 at 380 nm and 3.1 for PAR indicating more similarity in the UV region. NCP was severely inhibited by UV‐R at the surface of the LSW, whereas no effect was measured in the surrounding MW. In contrast, BPROTS and BDNAS were affected deeper by UV‐R in the MW (up to 8 m depth) compared to the LSW where inhibition was only observed at the surface. Differences in response of bacteria in LSW and MW are largely explained by differences in UV‐R transparency; however, transplant experiments indicate that bacterial assemblages from the MW were also more sensitive to UV‐R than those present in the LSW. We also observed that higher activity of bacteria after nutrient additions increased their sensitivity to UV‐R during the day, but favored their recovery during the night incubation period for both LSW and MW. Results suggest that riverine and nutrient inputs may alter the effects of UV‐R on microbial activity by attenuating the UV‐R penetration and by modifying the physiology of bacteria.  相似文献   

4.
Macroalgae play a crucial role in coastal marine ecosystems, but they are also subject to multiple challenges due to tidal and seasonal alterations. In this work, we investigated the photosynthetic response of Pyropia yezoensis to ultraviolet radiation (PAR: 400–700 nm; PAB: 280–700 nm) under changing temperatures (5, 10 and 15°C) and light intensities (200, 500 and 800 μmol photons m?2 s?1). Under low light intensity (200 μmol photons m?2 s?1), P. yezoensis showed the lowest sensitivity to ultraviolet radiation, regardless of temperature. However, higher temperatures inhibited the repair rates (r) and damage rates (k) of photosystem II (PSII) in P. yezoensis. However, under higher light intensities (500 and 800 μmol photons m?2 s?1), P. yezoensis showed higher sensitivity to UV radiation. Both r and the ratio of repair rate to damage rate (r:k) were significantly inhibited in P. yezoensis by PAB, regardless of temperature. In addition, higher temperatures significantly decreased the relative UV‐inhibition rates, while an increased carbon fixation rate was found. Our study suggested that higher light intensities enhanced the sensitivity to UV radiation, while higher temperatures could relieve the stress caused by high light intensity and UV radiation.  相似文献   

5.
In this work, the changes in isoflavone levels and the expression of genes involved in their biosynthesis were studied in two Astragalus by UPLC ‐MS and real‐time PCR after 10 days of UV ‐B treatment (λ max = 313 nm, 804 J m−2). Isoflavones were significantly induced by UV ‐B irradiation. The influence might be activated by the regulation of these target genes. Our results indicate that (1) the resistance of Astragalus membranaceus might not be as good as Astragalus mongholicus in the enhanced UV ‐B radiation environment; (2) the enhanced accumulation of calycosin and calycosin‐7‐glucoside with UV ‐B treatment in roots of A. mongholicus might be derived from formononetin which is synthesized in the leaves; (3) the glycosylation process could be stimulated and activated by the enhanced UV ‐B radiation in both A. mongholicus and A. membranaceus . In other words, glycosylation of isoflavones might play a crucial role for two Astragalus plants in response to UV ‐B stress. Overall, this study offered a feasible elicitation strategy to understand the accumulation pattern of isoflavone in A. mongholicus and A. membranaceus , and also provided a reference for the changes in isoflavone levels of Astragalus in UV ‐B enhanced environment in the future.  相似文献   

6.
《Arabian Journal of Chemistry》2020,13(11):8338-8346
The photodegradation of an industrial azo dye C.I Basic Red 46 was examined in a fixed-bed photoreactor using UV-lamps simulated to the solar irradiation. In our photodecolorization study, the UV/TiO2 process was optimized using the Box-Behnken approach to evaluate the synergistic effects of three independent parameters (initial concentration of the dye, flow rate, and UV intensity) on mineralization effectiveness. The response surface methodology was in good promise with the prediction model (coefficients of determination of decolorization and mineralization were R2Dec = 0.997 and R2TOC = 0.994, respectively). The effects of the factors could be estimated from a second–order polynomial equation and student’s t-test. The optimal parameters of decolorization and mineralization were as follows: initial concentration of colorant 25 mg L−1, rate of fluid flow 0.3 L min−1, and ultraviolet light intensity 38.1 W m−2. The decolorization and mineralization removal efficiency under these optimal conditions were 100% and 57.63% respectively. These results indicate that optimization using response surface methodology, based on the Box-Behnken approach, is an excellent tool for determining the optimal conditions, and the process can be easily extrapolated for a specific treatment of real waste water containing the azo dye C.I Basic Red 46. Also, the intermediates that were produced during photodegradation process of Basic Red 46 were determined by GC/MS.  相似文献   

7.
《Comptes Rendus Chimie》2002,5(11):679-692
Intrinsic and extrinsic ultraviolet absorption and radiation-induced effects were investigated in different glass types, fluorides, phosphates and borosilicates. High-purity glass samples were prepared and their intrinsic absorption was measured in the vacuum ultraviolet region. The influence of doped iron and tin species in the ppm range on the ultraviolet absorption and radiation-induced effects were studied. The maximum of the dominating Fe3+ charge transfer band has the lowest energy (4.8 eV) and intensity in the fluoride glass and the highest energy (5.6 eV) and intensity in the borosilicate glass samples. The charge-transfer band for Fe2+ has much lower intensity and higher energy (∼5.7 eV) than those for Fe3+ in all glasses investigated. Photo-oxidation of Fe2+ to (Fe2+)+ hole centres and glass-matrix-related electron centres by UV irradiation increases the UV absorption drastically in all glasses. The kinetics was measured and simulated depending on the glass matrix. In fluoride and phosphate glasses, Fe3+ complexes are very stable against UV irradiation and do not participate in UV-radiation-induced processes. Only in silicate glasses, Fe3+ is able to form a (Fe3+) electron centre defect which decreases the charge transfer absorption of Fe3+ near 220 nm, but increase the absorption of hole centre defects, with a maximum at 280 nm. So, the defect generation in the ultraviolet region increases drastically with increasing Fe content in the range 10–200 ppm. Three or four electronic s → p transitions for Sn2+ were detected by optical absorption and luminescence spectroscopy shifted to longer wavelength in the range fluoride → phosphate → silicate glass samples. Sn4+ absorption bands were found at shorter wavelength in the vacuum ultraviolet region in all cases investigated. Sn2+ ions are photo-oxidised under UV radiation very fast, which leads to an decrease of absorption near 200 nm and to an increase near 250 nm. Both Sn2+ and Sn4+ are involved in the radiation-induced processes. In contrast to phosphate and silicate glasses, tin-doped fluoride glasses are very resistant against UV lamp but not against UV laser irradiation. The mechanisms are very complicated, with maximums and minimums in the defect formation curves.  相似文献   

8.
2,4‐, 2,5‐, 2,6‐ and 3,5‐dihydroxyacetophenone (DHA) used as matrices in matrix‐assisted ultraviolet laser desorption/ionization mass spectrometry (UV‐MALDI‐MS) were studied by steady‐state and transient absorption spectroscopy, together with DFT calculations at the B3LYP level of theory. All compounds have low fluorescence quantum yields, possibly due to an efficient excited‐state intramolecular proton transfer (ESIPT). Laser flash photolysis (LFP) results showed that, only for 2,4‐DHA, a phototautomer could be detected at λ = 400 nm. Their photochemical stability in solution at different wavelengths and conditions was analyzed by UV–Vis and 1H nuclear magnetic resonance spectroscopy (1H‐NMR), together with thin layer chromatography and ultraviolet laser desorption/ionization mass spectrometry (UV‐LDI‐MS). Only 3,5‐DHA showed decomposition when irradiated, probably because phototautomerization is not possible. Thermal stability studies of these compounds in solid state were also conducted.  相似文献   

9.
Demetalation of chlorophyll (Chl) a and its analogs is an important reaction in oxygenic photosynthetic organisms, which produces the primary electron acceptors in photosystem II reaction centers and is crucial in the Chl degradation. From these viewpoints, demetalation reactions of four Chl a analogs, 3,8‐divinyl‐Chl a (DV‐Chl a), 3‐devinyl‐3‐ethyl‐Chl a (mesoChl a), 132‐demethoxycarbonyl‐Chl a (pyroChl a) and protochlorophyll a (PChl a), were kinetically analyzed under weakly acidic conditions, and were compared with that of Chl a. DV‐Chl a exhibited slower demetalation kinetics than did Chl a, whereas demetalation of mesoChl a was faster than that of Chl a. The difference in demetalation kinetics of the three chlorophyllous pigments originates from the electron‐withdrawing ability of the vinyl group as the peripheral substituent compared with the ethyl group. Removal of the electron‐withdrawing and homoconjugating 132‐methoxycarbonyl group in Chl a (Chl a → pyroChl a) accelerated demetalation kinetics by two‐fold. PChl a possessing the porphyrin‐type skeleton exhibited slower demetalation kinetics than Chl a. The structure‐dependent demetalation properties of Chl a analogs will be useful for understanding in vivo Chl demetalation reactions in oxygenic photosynthetic organisms.  相似文献   

10.
The picoplanktonic cyanobacteria, Synechococcus spp., (Nägeli) are important contributors to global ocean primary production that can be stressed by solar radiation, both in the photosynthetically active (PAR) and ultraviolet (UV) range. We studied the responses of PSII quantum yield (active fluorescence), carbon fixation (14C assimilation) and oxygen evolution (membrane inlet mass spectrometry) in Synechococcus WH8102 under moderate UV and PAR. PSII quantum yield decreased during exposure to moderate UV and UV+PAR, with response to the latter being faster (6.4 versus 2.8 min, respectively). Repair processes were also faster when UV+PAR exposure was followed by moderate PAR (1.68 min response time) than when UV was followed by very low PAR (10.5 min response time). For the UV+PAR treatment, the initial decrease in quantum yield was followed by a 50% increase (“rebound”) after 7 min exposure, showing an apparent photoprotection induction. While oxygen uptake increased with PAR, it did not change under UV, suggesting that this oxygen‐dependent mechanism of photoprotection, which may be acting as an electron sink, is not an important strategy against UV. We used propyl gallate, an antioxidant, to test for plastid terminal oxidase (ptox) or ptox‐like enzymes activity, but it caused nonspecific and toxic effects on Synechococcus WH8102.  相似文献   

11.
UV filters as emerging contaminants are of great concern and their wide detection in aquatic environments indicates their chemical stability and persistence. This review summarized the photolytic and photocatalytic degradation of UV filters in contaminated water. The findings indicated that limited research has been conducted on the photolysis and photocatalysis of UV filters. Photolysis of UV filters through UV irradiation in natural water was a slow process, which was accelerated by the presence of photosensitisers e.g. triplet state of chromaphoric dissolved organic matter (3CDOM*) and nutrients but reduced by salinity, dissolved organic matter (DOM) and divalent cations. UV Photocatalysis of 4-methylbenzylidene camphor and 2-phenylbenzimidazole-5-sulfonic acid was very effective with 100% removal within 30 min and 90 min using medicated TiO2/H2O2 and TiO2, respectively. The radiation source, type of catalyst and oxygen content were key factors. Future research should focus on improved understanding of photodegradation pathways and by-products of UV filters.  相似文献   

12.
We carried out experiments to evaluate seasonal changes in the impacts of UV radiation (UVR, 280–400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Surface water samples were obtained in the coastal area of the South China Sea, where chlorophyll a ranged 0.72–3.82 μg L−1. Assimilation numbers (photosynthetic carbon fixation rate per chl a) were significantly higher during summer 2005 than those in spring and winter 2004. The mean values obtained under photosynthetically active radiation (PAR) were 2.83 (spring 2004), 4.35 (winter 2004) and 7.29 μg C (μg chl a)−1 h−1 (summer 2005), respectively. The assimilation numbers under PAR + UVR were 1.58, 2.71 and 5.28 μg C (μg chl a)−1 h−1, for spring, winter and summer, respectively. UVR induced less inhibition of photosynthesis during summer 2005 than during the other seasons, in spite of the higher UVR during summer. The seasonal differences in the productivity and photosynthetic response to UV were mainly due to changes in water temperature, while irradiance and vertical mixing explained >80% of the observed variability. Our data suggest that previous studies in the SCS using UV-opaque vessels might have overestimated the phytoplankton production by about 80% in spring, 61% in winter and 38% in summer.  相似文献   

13.
Novel imidazolylethynyl-zinc-porphyrin 1a and its meso,meso-linked bisporphyrin 5M were synthesized effectively by the reaction of the corresponding bromoporphyrins and 2-imidazolylethyne in the presence of palladium-arsenic catalyst. The complementary coordination of monomer 1a into dimer 2a was observed by 1H NMR and UV–Vis spectroscopy. Self-association constant of 1a to 2a in CHCl3 (including 0.5% ethanol) was determined as 1.84 × 107 M−1 by UV–Vis titration of 2a with N-methylimidazole. UV–Vis absorption and fluorescence spectra of 1a, 2a, monomer 5M, and its polymer 5P were compared.  相似文献   

14.
UV‐chromophores contained in human skin may act as endogenous sensitizers of photooxidative stress and can be employed therapeutically for the photodynamic elimination of malignant cells. Here, we report that 6‐formylindolo[3,2‐b]carbazole (FICZ), a tryptophan‐derived photoproduct and endogenous aryl hydrocarbon receptor agonist, displays activity as a nanomolar sensitizer of photooxidative stress, causing the photodynamic elimination of human melanoma and nonmelanoma skin cancer cells in vitro and in vivo. FICZ is an efficient UVA/Visible photosensitizer having absorbance maximum at 390 nm (ε = 9180 L mol?1 cm?1), and fluorescence and singlet oxygen quantum yields of 0.15 and 0.5, respectively, in methanol. In a panel of cultured human squamous cell carcinoma and melanoma skin cancer cells (SCC‐25, HaCaT‐ras II‐4, A375, G361, LOX), photodynamic induction of cell death was elicited by the combined action of solar simulated UVA (6.6 J cm?2) and FICZ (≥10 nm ), preceded by the induction of oxidative stress as substantiated by MitoSOX Red fluorescence microscopy, comet detection of Fpg‐sensitive oxidative genomic lesions and upregulated stress response gene expression (HMOX1, HSPA1A, HSPA6). In SKH1 “high‐risk” mouse skin, an experimental FICZ/UVA photodynamic treatment regimen blocked the progression of UV‐induced tumorigenesis suggesting feasibility of harnessing FICZ for the photooxidative elimination of malignant cells in vivo.  相似文献   

15.
The role of solar UV radiation in the ecology of alpine lakes.   总被引:10,自引:0,他引:10  
Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.  相似文献   

16.
Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy (E a), pre-exponential factor (A), reaction order (n), and degradation mechanism changed considerably. For multi-walled CNTs, E a and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol−1, respectively, and from 1.71 × 105 to 5.81 × 107 s−1, respectively, whereas, E a for single-walled CNTs ranged from 83.84 to 148.68 kJ mol−1 and A from 2.55 × 102 to 1.18 × 107 s−1. Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., E a, A, and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying E a with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.  相似文献   

17.
In this investigation IR-change and yellowing of polyurethane as a result of UV radiation were studied. In the presence of UV radiation (200 h, λ > 300 nm), the synthesized aromatic polyurethane undergoes photodegradation with gradual change of its colour. The photochemical degradation of the polyurethane is associated with the scission of the urethane group and photooxidation of the central CH2 group between the aromatic rings. These reactions are combined with the yellowing of the polyurethane surface. Analysis of the colour changes in PU surface during photodegradation was carried out by measuring CIELab colour components (L,a,b and ΔEa,b). FT-IR spectroscopy was used to study the chemical changes caused by UV irradiation. The colour difference of yellowing Δa,b exhibits a systematic tendency to higher values with increasing irradiation time. Overall, ΔEa,b colour change correlates well with photodegradation of polyurethane by relative increase of the concentration of carbonyl group. Our results are in agreement with the quinone (yellow colour) formation as the chromophoric reaction product of polyurethane degradation.  相似文献   

18.
Seasonal changes in diffuse ultraviolet (UV) and visible light attenuations and inherent optical properties in the lake water were monitored at the pelagic and littoral shallow zones of Lake Biwa which features a broad range of optical conditions within a single large water body. We considered the absorption factors that affect UV attenuation, and clarified the contribution of the absorption of suspended particles and chromophoric dissolved organic matter (CDOM) by multiple regression analyses of the monitoring data. The variability of UV attenuations in the lake demonstrated a strong contrast between the pelagic and the shallow zones. The latter were characterized by turbid systems supplying suspended matter as well as CDOM, whereas the former was far from the turbid systems in the littoral zone or the lake bottom. In this lake, the regulation of UV and light attenuations is rendered competitive by the absorption of suspended particles and CDOM in the lake water, hence, the UV penetration has both spatial and temporal variability based on changes in the physical and biological condition of the lake.  相似文献   

19.
The retinal protein proteorhodopsin is a homolog of the well‐characterized light‐driven proton pump bacteriorhodopsin. Basic mechanisms of proton transport seem to be conserved, but there are noticeable differences in the pH ranges of proton transport. Proton transport and protonation state of a carboxylic acid side chain, the primary proton acceptor, are correlated. In case of proteorhodopsin, the pKa of the primary proton acceptor Asp‐97 (pKa ≈ 7.5) is unexpectedly close to environmental pH (pH ≈ 8). A significant fraction of proteorhodopsin is possibly inactive at natural pH, in contrast to bacteriorhodopsin. We investigated photoinduced kinetics of proteorhodopsin between pH 5 and pH 9 by time resolved UV/vis absorption spectroscopy. Kinetics is inhomogeneous within that pH region and can be considered as a superposition of two fractions. These fractions are correlated with the Asp‐97 titration curve. Beside Asp‐97, protonation equilibria of other groups influence kinetics, but the observations do not point toward major differences of primary proton acceptor function in proteorhodopsin and bacteriorhodopsin. The pKa of proteorhodopsin and some of its variants is suspected to be an example of molecular adaptation to the physiology of the original organisms.  相似文献   

20.
Our 1D + 1D model of DMFC reveals a new effect. At infinitely small total current in the cell, near the channel inlet forms a “bridge”, a narrow region with finite local current density. The bridge short-circuits the electrodes, thus reducing cell open-circuit voltage. In our previous work the effect is described for the case of equal methanol λa and oxygen λc stoichiometries. In this Letter, we analyze the general case of arbitrary λa and λc. In the case of λa > λc current may occupy finite domain of the cell surface. Asymptotic solution for the case of λa  λc shows, that the size of this domain is proportional to oxygen stoichiometry. In the opposite limit of λa  λc local current exponentially decreases with the distance along the channel. Asymptotic solutions suggest that the bridge forms regardless of the relationship between λa and λc. In all cases local current density in the bridge increases with the rate of methanol crossover and decreases with the growth of the “rate-determining” stoichiometry. The expression for voltage loss at open-circuit is derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号