首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Development of self‐healing and photostimulated luminescent supramolecular polymeric materials is important for artificial soft materials. A supramolecular polymeric hydrogel is reported based on the host–guest recognition between a β‐cyclodextrin (β‐CD) host polymer (poly‐β‐CD) and an α‐bromonaphthalene (α‐BrNp) polymer (poly‐BrNp) without any additional gelator, which can self‐heal within only about one minute under ambient atmosphere without any additive. This supramolecular polymer system can be excited to engender room‐temperature phosphorescence (RTP) signals based on the fact that the inclusion of β‐CD macrocycle with α‐BrNp moiety is able to induce RTP emission (CD‐RTP). The RTP signal can be adjusted reversibly by competitive complexation of β‐CD with azobenzene moiety under specific irradiation by introducing another azobenzene guest polymer (poly‐Azo).  相似文献   

4.
Stretchable self‐healing urethane‐based biomaterials have always been crucial for biomedical applications; however, the strength is the main constraint of utilization of these healable materials. Here, a series of novel, healable, elastomeric, supramolecular polyester urethane nanocomposites of poly(1,8‐octanediol citrate) and hexamethylene diisocyanate reinforced with cellulose nanocrystals (CNCs) are introduced. Nanocomposites with various amounts of CNCs from 10 to 50 wt% are prepared using solvent casting technique followed by the evaluation of their microstructural features, mechanical properties, healability, and biocompatibility. The synthesized nanocomposites indicate significantly higher tensile modulus (approximately 36–500‐fold) in comparison to the supramolecular polymer alone. Upon exposure to heat, the materials can reheal, but nevertheless when the amount of CNC is greater than 10 wt%, the self‐healing ability of nanocomposites is deteriorated. These materials are capable of rebonding ruptured parts and fully restoring their mechanical properties. In vitro cytotoxicity test of the nanocomposites using human dermal fibroblasts confirms their good cytocompatibility. The optimized structure, self‐healing attributes, and noncytotoxicity make these nanocomposites highly promising for tissue engineering and other biomedical applications.  相似文献   

5.
Polymer hydrogels that are capable of spontaneously healing injury are being developed at a rapid pace because of their great potential in biomedical applications. Here, the self‐healing property of tough graphene nanocomposite hydrogels fabricated by using graphene peroxide as polyfunctional initiating and cross‐linking centers is reported. The hydrogels show excellent self‐healing ability at ambient temperature or even lower temperatures for a short time and very high recovery degrees (up to 88% tensile strength) can be achieved at a prolonged healing time. The healed gels exhibit very high tensile strengths (up to 0.35 MPa) and extremely high elongations (up to 4900%). The strong interactions between the polyacrylamide chains and the graphene oxide sheets are essential to the mechanical strengths of the healed gels.

  相似文献   


6.
A dextran‐based self‐healing hydrogel is prepared by reversible Diels–Alder reaction under physiological conditions. Cytocompatible fulvene‐modified dextran as main polymer chains and dichloromaleic‐acid‐modified poly(ethylene glycol) as cross‐linkers are used. Both macro‐ and microscopic observation as well as the rheological recovery test confirm the self‐healing property of the dextran‐l‐poly(ethylene glycol) hydrogels (“l” means “linked‐by”). In addition, scanning electrochemical microscopy is used to qualitatively and quantitatively in situ track the self‐healing process of the hydrogel for the first time. It is found that the longitudinal depth of scratch on hydrogel surface almost completely healed at 37 °C after 7 h. This work represents a facile approach for fabrication of polysaccharide self‐healing hydrogel, which can be potentially used in several biomedical fields.

  相似文献   


7.
The preparation of physically crosslinked hydrogels from quasi ABA‐triblock copolymers with a water‐soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N‐acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one‐pot sequential monomer addition through reversible addition fragmentation chain‐transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic–hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase‐separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self‐healing ability after large strain damage is shown.

  相似文献   


8.
There is a significant cost to mitigate the infection and inflammation associated with the implantable medical devices. The development of effective antibacterial and anti‐inflammatory biomaterials with novel mechanism of action has become an urgent task. In this study, a supramolecular polymer hydrogel is synthesized by the copolymerization of N‐acryloyl glycinamide and 1‐vinyl‐1,2,4‐triazole in the absence of any chemical crosslinker. The hydrogel network is crosslinked through the hydrogen bond interactions between dual amide motifs in the side chain of N‐acryloyl glycinamide. The prepared hydrogels demonstrate excellent mechanical properties—high tensile strength (≈1.2 MPa), large stretchability (≈1300%), and outstanding compressive strength (≈11 MPa) at swelling equilibrium state. A simulation study elaborates the changes of hydrogen bond interactions when 1‐vinyl‐1,2,4‐triazole is introduced into the gel network. It is demonstrated that the introduction of 1‐vinyl‐1,2,4‐triazole endowes the supramolecular hydrogels with self‐repairability, thermoplasticity, and reprocessability over a lower temperature range for 3D printing of different shapes and patterns under simplified thermomelting extrusion condition. In addition, these hydrogels exhibit antimicrobial and anti‐inflammatory activities, and in vitro cytotoxicity assay and histological staining following in vivo implantation confirm the biocompatibility of the hydrogel. These hydrogels with integrated multifunctions hold promising potential as an injectable biomaterial for treating degenerated soft supporting tissues.

  相似文献   


9.
Supramolecular hydrogels are a class of self‐assembled network structures formed via non‐covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol–gel and/or gel–sol transition upon subtle changes in their surroundings. Such stimuli‐responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli‐responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self‐assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.  相似文献   

10.
Enzyme‐mediated self‐healing of dynamic covalent bond‐driven protein hydrogels was realized by the synergy of two enzymes, glucose oxidase (GOX) and catalase (CAT). The reversible covalent attachment of glutaraldehyde to lysine residues of GOX, CAT, and bovine serum albumin (BSA) led to the formation and functionalization of the self‐healing protein hydrogel system. The enzyme‐mediated protein hydrogels exhibit excellent self‐healing properties with 100 % recovery. The self‐healing process was reversible and effective with an external glucose stimulus at room temperature.  相似文献   

11.
The promising potential of a RAD‐16 self‐assembly‐peptide hydrogel as a scaffold for tissue‐engineered cartilage was investigated. Within 3 weeks of in vitro culture, chondrocytes within the hydrogel produced a high amount of GAG and type‐II collagen, which are the components of cartilage‐specific extracellular matrix (ECM). With the culture time increased, toluidine‐blue staining for GAG and immuno‐histochemistry staining for type‐II collagen of the chondrocytes‐hydrogel composites became more intense. Analysis of the gene expression of the ECM molecules also confirmed the chondrocytes in the peptide hydrogel maintained their phenotype within 3 weeks of in vitro culture.

  相似文献   


12.
Polymer hydrogels with characteristics distinct from those of solid materials are one of the most promising candidates for smart materials. Here, we report that a nanocomposite hydrogel (NC gel) consisting of a unique polymer/clay network structure, can exhibit complete self‐healing through autonomic reconstruction of crosslinks across a damaged interface. Mechanical damage in NC gels can be repaired without the use of a healing agent, and even sections of NC gels separated by cutting, from whichever the same or different kinds of NC gel, perfectly (re‐)combine by just contacting the cut surfaces together at mildly elevated temperatures. In NC gels, the autonomic fusion of cut surfaces as well as the self‐healing could be achieved not only immediately after being cut but also after a long waiting time.

  相似文献   


13.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


14.
Self‐healing hydrogels have been studied by many researchers via multiple cross‐linking approaches including physical and chemical interactions. It is an interesting project in multifunctional hydrogel exploration that a water soluble polymer matrix is cross‐linked by combining the ionic coordination and the multiple hydrogen bonds to fabricate self‐healing hydrogels with injectable property. This study introduces a general procedure of preparing the hydrogels (termed gelatin‐UPy‐Fe) cross‐linked by both ionic coordination of Fe3+ and carboxyl group from the gelatin and the quadruple hydrogen bonding interaction from the ureido‐pyrimidinone (UPy) dimers. The gelatin‐UPy‐Fe hydrogels possess an excellent self‐healing property. The effects of the ionic coordination of Fe3+ and quadruple hydrogen bonding of UPy on the formation and mechanical behavior of the prepared hydrogels are investigated. In vitro drug release of the gelatin‐UPy‐Fe hydrogels is also observed, giving an intriguing glimpse into possible biological applications.

  相似文献   


15.
Integrating self‐healing capability into supramolecular architectures is an interesting strategy, and can considerably enhance the performance and broaden the scope of applications for this important class of polymers. Herein we report the rational design of novel V‐shaped barbiturate (Ba) functionalized soft–hard–soft triblock copolymers with a reversible supramolecular healing motif (Ba) in the central part of the hard block, which undergoes autonomic repair at 30 °C. The designed synthesis also offers a suitable macromolecular building block to further self‐assemble with heterocomplementary α,ω‐Hamilton wedge (HW) functionalized polyisoprene (PI; HW‐PI‐HW), resulting in an H‐shaped supramolecular architecture with efficient self‐healing capabilities that can recover up to around 95 % of the original mechanical performance at 30 °C within 24 h.  相似文献   

16.
Development of self‐healing polymers with spontaneous self‐healing capability and good mechanical performance is highly desired and remains a great challenge. Here, mechanical robust and self‐healable supramolecular hydrogels have been fabricated by using poly(2‐dimethylaminoethyl methacrylate) brushes modified silica nanoparticles (SiO2@PDMAEMA) as multifunctional macrocrosslinkers in a poly(acrylic acid) (PAA) network structure. The SiO2 nanoparticles serve as noncovalent crosslinkers, dissipating energy, whereas the electrostatic interactions between cationic PDMAEMA and anionic PAA render the hydrogel self‐healing property. This process provides a simple and broadly applicable strategy to produce mechanical strong and self‐healable materials.

  相似文献   


17.
As polymers and polymeric materials are “the” smart invention and technological driving force of the 20th century, the quest for self‐healing or self‐repairing polymers is strong. The concept of supramolecular self‐healing materials relies on the use of noncovalent, transient bonds to generate networks, which are able to heal the damaged site, putting aspects of reversibility and dynamics of a network as crucial factors for the understanding and design of such self‐healing materials. This Review describes recent examples and concepts of supramolecular polymers based on hydrogen bonding, π–π interactions, ionomers, and coordinative bonds, thus convincingly discussing the advantages and versatility of these supramolecular forces for the design and realization of self‐healing polymers.  相似文献   

18.
In light of the limited efficacy of current treatments for cardiac regeneration, tissue engineering approaches have been explored for their potential to provide mechanical support to injured cardiac tissues, deliver cardio‐protective molecules, and improve cell‐based therapeutic techniques. Injectable hydrogels are a particularly appealing system as they hold promise as a minimally invasive therapeutic approach. Moreover, injectable acellular alginate‐based hydrogels have been tested clinically in patients with myocardial infarction (MI) and show preservation of the left ventricular (LV) indices and left ventricular ejection fraction (LVEF). This review provides an overview of recent developments that have occurred in the design and engineering of various injectable hydrogel systems for cardiac tissue engineering efforts, including a comparison of natural versus synthetic systems with emphasis on the ideal characteristics for biomimetic cardiac materials.  相似文献   

19.
A novel and non‐cytotoxic self‐healing supramolecular elastomer (SE) is synthesized with small‐molecular biological acids by hydrogen‐bonding interactions. The synthesized SEs behave as rubber at room temperature without additional plasticizers or crosslinkers, which is attributed to the phase‐separated structure. The SE material exhibits outstanding self‐healing capability at room temperature and essential non‐cytotoxicity, which makes it a potential candidate for biomedical applications.

  相似文献   


20.
New methodology for making novel materials is highly desirable. Here, an “ingredients” approach to functional self‐assembled hydrogels was developed. By designing a building block to contain the right ingredients, a multi‐responsive, self‐assembled hydrogel was obtained through a process of template‐induced self‐synthesis in a dynamic combinatorial library. The system can be switched between gel and solution by light, redox reactions, pH, temperature, mechanical energy and sequestration or addition of MgII salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号