首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene‐1,4‐dicarboxylic acid (H2BDC) and pyridine (py) with ZnII or CoII yielded two new coordination polymers, namely, poly[(μ4‐benzene‐1,4‐dicarboxylato‐κ4O:O′:O′′:O′′′)(pyridine‐κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena‐poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ3O:O′:O′′)bis(pyridine‐κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the ZnII cation is five‐coordinated by four carboxylate O atoms from four BDC2− ligands and one pyridine N atom in a distorted square‐pyramidal coordination geometry. Four carboxylate groups bridge two ZnII ions to form centrosymmetric paddle‐wheel‐like Zn22‐COO)4 units, which are linked by the benzene rings of the BDC2− ligands to generate a two‐dimensional layered structure. The two‐dimensional layer is extended into a three‐dimensional supramolecular structure with the help of π–π stacking interactions between the aromatic rings. Compound (II) has a one‐dimensional double‐chain structure based on Co22‐COO)2 units. The CoII cations are bridged by BDC2− ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC2− ligands, one water O atom and two pyridine N atoms. Interchain O—H…O hydrogen‐bonding interactions link these chains to form a three‐dimensional supramolecular architecture.  相似文献   

2.
In the title coordination polymer, catena‐poly[[bis[{1‐[(1H‐benzimidazol‐2‐yl‐κN3)methyl]‐1H‐tetrazole}zinc(II)]‐bis(μ4‐pentane‐1,5‐dioato‐1:2:1′:2′κ4O1:O1′:O5:O5′)] methanol disolvate], {[Zn(C5H6O4)(C9H8N6)]·CH3OH}n, each ZnII ion is five‐coordinated by four O atoms from four glutarate ligands and by one N atom from a 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) ligand, leading to a slightly distorted square‐pyramidal coordination environment. Two ZnII ions are linked by four bridging glutarate carboxylate groups to generate a dinuclear [Zn2(CO2)4] paddle‐wheel unit. The dinuclear units are further connected into a one‐dimensional chain via the glutarate ligands. The bimt ligands coordinate to the ZnII ions in a monodentate mode and are pendant on both sides of the main chain. In the crystal, the chains are linked by O—H...O and N—H...O hydrogen bonds into a two‐dimensional layered structure. Adjacent layers are further packed into a three‐dimensional network through van der Waals forces. A thermogravimetric analysis was carried out and the photoluminescent behaviour of the polymer was investigated.  相似文献   

3.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

4.
In the title compound, [Cu(C14H18O4)(H2O)]n, each CuII atom bonds to four O atoms of four adamantanediacetate (ada) ligands in equatorial positions and an O atom from a water mol­ecule in the apical position. Two adjacent CuII atoms form a paddle‐wheel unit with four ada ligands. The distance between the two Cu atoms is 2.5977 (3) Å. A crystallographic inversion center is located at the center of the Cu–Cu core. Each Cu2(ada)4 paddle‐wheel further bonds to four adjacent identical paddle‐wheel units, generating a two‐dimensional layered structure of Cu(ada)(H2O) with a 44 topology.  相似文献   

5.
3,4‐Dimethoxy‐trans‐cinnamic acid (Dmca) reacts with zinc sulfate in the presence of 4‐(1H‐pyrazol‐3‐yl)pyridine (L1) or 4,4′‐bipyridine (L2) under hydrothermal conditions to afford two mixed‐ligand coordination complexes, namely tetrakis(μ‐3,4‐dimethoxy‐trans‐cinnamato‐κ2O:O′)bis[[4‐(1H‐pyrazol‐3‐yl)pyridine]zinc(II)] heptahydrate, [Zn2(C11H11O4)4(C8H7N3)2]·7H2O or [Zn2(Dmca)4(L1)2]·7H2O, (I), and catena‐poly[[bis(3,4‐dimethoxy‐trans‐cinnamato‐κO)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(C11H11O4)2(C10H8N2)]n or [Zn(Dmca)2(L2)]n, (II). The ZnII centres in the two compounds display different coordination polyhedra. In complex (I), the ZnII cation is five‐coordinated with a pseudo‐square‐pyramidal geometry, while in complex (II) the ZnII cation sits on a twofold axis and adopts a distorted tetrahedral coordination environment. Complex (I) features a centrosymmetric binuclear paddle‐wheel‐like structure, while complex (II) shows a chain structure. This study emphasizes the significant effect of the coordination mode of both carboxylate‐group and N‐donor coligands on the formation of complex structures.  相似文献   

6.
The title coordination polymer, poly[[aqua(μ5‐1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylic acid (H4bpta), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdII cations, with one of the CdII cations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdII centre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4‐bib ligands, displaying a distorted octahedral CdN2O4 geometry. The completely deprotonated bpta4− ligand, exhibiting a new coordination mode, bridges five CdII cations to form one‐dimensional chains viaμ3‐η1212 and μ2‐η1100 modes, and these are further linked by 1,4‐bib ligands to form a three‐dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid‐state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent‐resistant blue fluorescent material.  相似文献   

7.
A novel three‐dimensional ZnII complex, poly[[(μ2‐4,4′‐bipyridine)(μ4‐naphthalene‐1,4‐dicarboxylato)(μ2‐naphthalene‐1,4‐dicarboxylato)dizinc(II)] dimethylformamide monosolvate monohydrate], {[Zn2(C12H6O4)2(C10H8N2)]·2C3H7NO·H2O)}n, has been prepared by the solvothermal assembly of Zn(NO3)·6H2O, naphthalene‐1,4‐dicarboxylic acid and 4,4′‐bipyridine. The two crystallographically independent Zn atoms adopt the same four‐coordinated tetrahedral geometry (ZnO3N) by bonding to three O atoms from three different naphthalene‐1,4‐dicarboxylate (1,4‐ndc) ligands and one N atom from a 4,4′‐bipyridine (bpy) ligand. The supramolecular secondary building unit (SBU) is a distorted paddle‐wheel‐like {Zn2(COO)2N2O2} unit and these units are linked by 1,4‐ndc ligands within the layer to form a two‐dimensional net parallel to the ab plane, which is further connected by bpy ligands to form the three‐dimensional framework. The single net leaves voids that are filled by mutual interpenetration of an independent equivalent framework in a twofold interpenetrating architecture. The title compound is stable up to 673 K. Excitation and luminescence data observed at room temperature show that it emits bright‐blue fluorescence.  相似文献   

8.
Two new Zn2+‐based metal–organic frameworks (MOFs) based on biphenyl‐2,2′,5,5′‐tetracarboxylic acid, i.e. H4(o,m‐bpta), and N‐donor ligands, namely, poly[[(μ4‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis{[1,3‐phenylenebis(methylene)]bis(1H‐imidazole)}dizinc(II)] dimethylformamide monosolvate dihydrate], {[Zn2(C16H6O8)(C14H14N4)2]·C3H7NO·2H2O}n or {[Zn2(o,m‐bpta)(1,3‐bimb)2]·C3H7NO·2H2O}n ( 1 ) {1,3‐bimb = [1,3‐phenylenebis(methylene)]bis(1H‐imidazole)}, and poly[[(μ4‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis{[1,4‐phenylenebis(methylene)]bis(1H‐imidazole)}dizinc(II)] monohydrate], {[Zn2(C16H6O8)(C14H14N4)2]·H2O}n or {[Zn2(o,m‐bpta)(1,4‐bimb)2]·H2O}n ( 2 ) {1,4‐bimb = [1,4‐phenylenebis(methylene)]bis(1H‐imidazole)}, have been synthesized under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction analysis. Structurally, the (o,m‐bpta)4? ligands are fully deprotonated and combine with Zn2+ ions in μ4‐coordination modes. Complex 1 is a (3,4)‐connected porous network with honeycomb‐like [Zn2(o,m‐bpta)]n sheets formed by 4‐connected (o,m‐bpta)4? ligands. Complex 2 exhibits a (2,4)‐connected network formed by 4‐connected (o,m‐bpta)4? ligands linking Zn2+ ions in left‐handed helical chains. The cis‐configured 1,3‐bimb and 1,4‐bimb ligands bridge Zn2+ ions to form multi‐membered [Zn2(bimb)2] loops. Optically, the complexes show strong fluorescence and display larger red shifts compared to free H4(o,m‐bpta). Complex 2 shows ferroelectric properties due to crystallizing in the C2v polar point group.  相似文献   

9.
Coordination polymers constructed from conjugated organic ligands and metal ions with a d10 electronic configuration exhibit intriguing properties for chemical sensing and photochemistry. A ZnII‐based coordination polymer, namely poly[aqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)(μ2‐4,4′‐bipyridine)dizinc(II)], [Zn2(C16H6O8)(C10H8N2)(H2O)2]n or [Zn2(m,m‐bpta)(4,4′‐bipy)(H2O)2]n, was synthesized from a mixture of biphenyl‐3,3′,5,5′‐tetracarboxylic acid [H4(m,m‐bpta)], 4,4′‐bipyridine (4,4′‐bipy) and Zn(NO3)2·6H2O under solvothermal conditions. The title complex has been structurally characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction analysis, and features a μ6‐coordination mode. The ZnII ions adopt square‐pyramidal geometries and are bridged by two synsyn carboxylate groups to form [Zn2(COO)2] secondary buildding units (SBUs). The SBUs are crosslinked by (m,m‐bpta)4? ligands to produce a two‐dimensional grid‐like layer that exhibits a stair‐like structure along the a axis. Adjacent layers are linked by 4,4′‐bipy ligands to form a three‐dimensional network with a {44.610.8}{44.62} topology. In the solid state, the complex displays a strong photoluminescence and an excellent solvent stability. In addition, the luminescence sensing results indicate a highly selective and sensitive sensing for Fe3+ ions.  相似文献   

10.
The title compound, [Zn4(C7H4O3)4(C10H8N2)4]·10H2O, crystallizes as a centrosymmetric tetranuclear cyclic complex containing four ZnII atoms bridged by four carboxyl­ate groups from salicyl­ate ligands, with a synanti configuration. Each ZnII atom has a distorted trigonal–bipyramidal coordination geometry, formed by two N atoms of a 2,2′‐bipyridine ligand and three O atoms from two salicyl­ate ligands. The complex is stabilized by intramolecular π–π interactions between pairs of bi­pyridine rings and a 16‐membered gear‐wheel‐shaped cyclic framework. The hydrogen‐bonding network is formed via the water mol­ecules.  相似文献   

11.
The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene‐1,4‐dicarboxylic acid (H2bdc) and 1,10‐phenanthroline‐5,6‐dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2 fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3‐OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2− ligands are fully deprotonated and adopt μ3‐κOO′:κO′′ and μ4‐κOO′:κO′′:κO′′′ coordination modes, bridging three or four ZnII cations, respectively, from two Zn4(OH)2 units. The Zn4(OH)2 fragment connects six neighbouring tetranuclear units through four μ3‐bdc2− and two μ4‐bdc2− ligands, forming a three‐dimensional framework with uninodal 6‐connected α‐Po topology, in which the tetranuclear Zn4(OH)2 units are considered as 6‐connected nodes and the bdc2− ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2 unit and are connected to it through hydrogen‐bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4‐bdc2− ligands.  相似文献   

12.
With the rapid development of metal–organic frameworks (MOFs), a variety of MOFs and their derivatives have been synthesized and reported in recent years. Commonly, multifunctional aromatic polycarboxylic acids and nitrogen‐containing ligands are employed to construct MOFs with fascinating structures. 4,4′,4′′‐(1,3,5‐Triazine‐2,4,6‐triyl)tribenzoic acid (H3TATB) and the bidentate nitrogen‐containing ligand 1,3‐bis[(imidazol‐1‐yl)methyl]benzene (bib) were selected to prepare a novel ZnII‐MOF under solvothermal conditions, namely poly[[tris{μ‐1,3‐bis[(imidazol‐1‐yl)methyl]benzene}bis[μ3‐4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoato]trizinc(II)] dimethylformamide disolvate trihydrate], {[Zn3(C24H12N3O6)2(C14H14N4)3]·2C3H7NO·3H2O}n ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction, IR spectroscopy and powder X‐ray diffraction. The properties of 1 were investigated by thermogravimetric and fluorescence analysis. Single‐crystal X‐ray diffraction shows that 1 belongs to the monoclinic space group Pc. The asymmetric unit contains three crystallographically independent ZnII centres, two 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoate (TATB3?) anions, three complete bib ligands, one and a half free dimethylformamide molecules and three guest water molecules. Each ZnII centre is four‐coordinated and displays a distorted tetrahedral coordination geometry. The ZnII centres are connected by TATB3? anions to form an angled ladder chain with large windows. Simultaneously, the bib ligands link ZnII centres to give a helical Zn–bib–Zn chain. Furthermore, adjacent ladders are bridged by Zn–bib–Zn chains to form a fascinating three‐dimensional self‐penetrated framework with the short Schläfli symbol 65·7·813·9·10. In addition, the luminescence properties of 1 in the solid state and the fluorescence sensing of metal ions in suspension were studied. Significantly, compound 1 shows potential application as a fluorescent sensor with sensing properties for Zr4+ and Cu2+ ions.  相似文献   

13.
In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnII cation, two halves of 2,2′‐(diazene‐1,2‐diyl)dibenzoate anions (denoted L2−) and half of a 1,2‐bis(pyridin‐4‐yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnII centre is four‐coordinated by three O atoms of bridging carboxylate groups from three L2− ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnII atoms are bridged by two carboxylate groups of L2− ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodes via the sharing of four L2− ligands to form a two‐dimensional [Zn2L4]n net. These nets are separated by bpe ligands acting as spacers, producing a three‐dimensional framework with a 4664 topology. Powder X‐ray diffraction and solid‐state photoluminescence were also measured.  相似文献   

14.
The title compound, [Zn2(C9H4O6)2(C6H6N4)2], consists of two ZnII ions, two 5‐carboxybenzene‐1,3‐dicarboxylate (Hbtc2−) dianions and two 2,2′‐bi‐1H‐imidazole (bimz) molecules. The ZnII centre is coordinated by two carboxylate O atoms from two Hbtc2− ligands and by two imidazole N atoms of a bimz ligand, in a distorted tetrahedral coordination geometry. Two neighbouring ZnII ions are bridged by a pair of Hbtc2− ligands, forming a discrete binuclear [Zn2(Hbtc)2(bimz)2] structure lying across an inversion centre. Hydrogen bonds between carboxyl H atoms and carboxylate O atoms and between imidazole H atoms and carboxylate O atoms link the binuclear units. These binuclear units are further extended into a three‐dimensional supramolecular structure through extensive O—H...O and N—H...O hydrogen bonds. Moreover, the three‐dimensional nature of the crystal packing is reinforced by the π–π stacking. The title compound exhibits photoluminescence in the solid state, with an emission maximum at 415 nm.  相似文献   

15.
The title novel two‐dimensional coordination polymer, {[Zn2(C10H8N3O2)4]·H2O}n, features a {Zn2L2} bimetallic ring repeat unit {L is the 3‐[(1H‐1,2,4‐triazol‐1‐yl)methyl]benzoate ligand}. Each ZnII cation of the bimetallic ring is further bonded to two other L ligands, resulting in a novel infinite two‐dimensional network structure with two channels of different sizes. The crystallographically unique ZnII atom is thus six‐coordinated in a distorted octahedral environment of four carboxylate O atoms and two triazole N atoms. Two of these networks interpenetrate in an orthogonal arrangement to form the full three‐dimensional framework, with disordered water molecules located in the channels.  相似文献   

16.
The structures of ammonium 3,5‐dinitrobenzoate, NH4+·C7H3N2O6, (I), ammonium 4‐nitrobenzoate dihydrate, NH4+·C7H4NO4·2H2O, (II), and ammonium 2,4‐dichlorobenzoate hemihydrate, NH4+·C7H3Cl2O2·0.5H2O, (III), have been determined and their hydrogen‐bonded structures are described. All three salts form hydrogen‐bonded polymeric structures, viz. three‐dimensional in (I) and two‐dimensional in (II) and (III). With (I), a primary cation–anion cyclic association is formed [graph set R43(10)] through N—H...O hydrogen bonds, involving a carboxylate group with both O atoms contributing to the hydrogen bonds (denoted O,O′‐carboxylate) on one side and a carboxylate group with one O atom involved in two hydrogen bonds (denoted O‐carboxylate) on the other. Structure extension involves N—H...O hydrogen bonds to both carboxylate and nitro O‐atom acceptors. With structure (II), the primary inter‐species interactions and structure extension into layers lying parallel to (001) are through conjoined cyclic hydrogen‐bonding motifs, viz.R43(10) (one cation, an O,O′‐carboxylate group and two water molecules) and centrosymmetric R42(8) (two cations and two water molecules). The structure of (III) also has conjoined R43(10) and centrosymmetric R42(8) motifs in the layered structure but these differ in that the first motif involves one cation, an O,O′‐carboxylate group, an O‐carboxylate group and one water molecule, and the second motif involves two cations and two O‐carboxylate groups. The layers lie parallel to (100). The structures of salt hydrates (II) and (III), displaying two‐dimensional layered arrays through conjoined hydrogen‐bonded nets, provide further illustration of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three‐dimensional structure of (I) is inconsistent with that trend.  相似文献   

17.
The 2‐methylbiphenyl‐4,4′‐dicarboxylate (mbpdc2−) ligand has versatile coordination modes and can be used to construct multinuclear structures. Despite this, reports of the synthesis of coordination complexes involving this ligand are scarce. The title compound, poly[[triaquadi‐μ3‐hydroxido‐hexakis(μ4‐2‐methylbiphenyl‐4,4′‐dicarboxylato)calcium(II)hexazinc(II)] monohydrate], {[CaZn6(C15H10O4)6(OH)2(H2O)3]·H2O}n , has been prepared by the hydrothermal assembly of Zn(NO3)2·6H2O, CaCl2 and 2‐methylbiphenyl‐4,4′‐dicarboxylic acid. Two ZnII atoms adopt a four‐coordinated distorted tetrahedral geometry by bonding to three O atoms from three different 2‐methylbiphenyl‐4,4′‐dicarboxylate (mbpdc2−) dianionic ligands and one bridging hydroxide O atom. For the remaining ZnII atom, a five‐coordinate environment is completed half the time by one carboxylate O atom, and then the same carboxylate O atom and an aqua O atom are present the other half of the time, giving a six‐coordinate environment. The CaII atom is coordinated by six O atoms to give an octahedral coordination geometry. The supramolecular secondary building unit (SBU) is a hamburger‐like heptanuclear unit (Zn6CaO30) and these units are interconnected through mbpdc2− carboxylate groups to generate a three‐dimensional framework with the pcu topology. The single net leaves voids that are filled by mutual interpenetration of an independent equivalent framework in a twofold interpenetrating architecture. The title compound shows thermal stability up to 673 K. The excitation and luminescence data showed the emission of a bright‐blue fluorescence.  相似文献   

18.
In the C2‐symmetric dinuclear title complex, [Zn2(C18H13N4O2)2(C2H3O2)2]·4H2O, each ZnII ion is five‐coordinated in a distorted trigonal bipyramidal fashion by one carboxylate O atom from one benzoate ligand, one imine N atom and two pyridyl N atoms from a second benzoate ligand, and one O atom from an acetate anion. The two Zn atoms are bridged by the two benzoate ligands, forming a dinuclear structure with a 14‐membered macrocycle. Adjacent dinuclear units are further connected by extensive hydrogen bonds involving the solvent water molecules, giving a three‐dimensional hydrogen‐bonded framework. The framework can be regarded as an example of the four‐connected node network of the PtS topology.  相似文献   

19.
Metal–organic frameworks (MOFs) are a new class of porous materials that have received widespread attention due to their potential applications in gas storage and/or separation, catalysis, luminescence, and so on. The title compound, poly[[(μ2‐3,3′‐dimethyl‐4,4′‐bipyridine‐κ2N:N′)bis(μ4‐4,4′‐oxydibenzoato‐κ4O:O′:O′′:O′′′)dizinc] tetrahydrate], {[Zn2(C14H8O5)2(C12H12N2)]·4H2O}n, has been prepared by the solvothermal assembly of Zn(NO3)2·6H2O, 4,4′‐oxydi(benzoic acid) and 3,3′‐dimethyl‐4,4′‐bipyridine. The two ZnII atoms adopt the same five‐coordinated distorted square‐pyramidal geometry (i.e. ZnO4N), bonding to four O atoms from four different 4,4′‐oxydibenzoate (oba) ligands and one N atom from a 3,3′‐dimethyl‐4,4′‐bipyridine (dmbpy) ligand. The supramolecular secondary building unit (SBU) is a paddle‐wheel [Zn2(COO)4] unit and these units are linked by oba ligands within the layer to form a two‐dimensional net parallel to the b axis, with the dmbpy ligands pointing alternately up and down, which is further extended by dmbpy ligands to form a three‐dimensional framework with rob topology. The single net leaves voids that are filled by mutual interpenetration of an independent equivalent framework in a twofold interpenetrating architecture. The title compound shows thermal stability up to 673 K and is stable in aqueous solutions in the pH range 5–9. Excitation and luminescence data observed at room temperature show that it emits a bright‐blue fluorescence.  相似文献   

20.
The coordination chemistry of mixed‐ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal–organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic–inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene‐2‐carboxylate (2‐TPC) and 2‐amino‐4,6‐dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X‐ray diffraction studies, namely (2‐amino‐4,6‐dimethoxypyrimidine‐κN)aquachlorido(thiophene‐2‐carboxylato‐κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena‐poly[copper(II)‐tetrakis(μ‐thiophene‐2‐carboxylato‐κ2O:O′)‐copper(II)‐(μ‐2‐amino‐4,6‐dimethoxypyrimidine‐κ2N1:N3)], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the CoII ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2‐TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2‐TPC ligand form an interligand N—H…O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R22(8) motif] via a pair of N—H…N hydrogen bonds. These interactions, together with O—H…O and O—H…Cl hydrogen bonds and π–π stacking interactions, generate a three‐dimensional supramolecular architecture. The one‐dimensional coordination polymer (II) contains the classical paddle‐wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2‐TPC ligands bridges two square‐pyramidally coordinated CuII ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one‐dimensional polymeric chains self‐assemble via N—H…O, π–π and C—H…π interactions, generating a three‐dimensional supramolecular architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号