首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Semiconductor TiO2 particles loaded with WO3 (WO3/TiO2), synthesized by impregnation of tungstic acid followed by calcination, were used for photocatalytic oxidation of alcohols in water with molecular oxygen under irradiation at λ>350 nm. The WO3/TiO2 catalysts promote selective oxidation of alcohols to aldehydes and show higher catalytic activity than pure TiO2. In particular, a catalyst loading 7.6 wt % WO3 led to higher aldehyde selectivity than previously reported photocatalytic systems. The high aldehyde selectivity arises because subsequent photocatalytic decomposition of the formed aldehyde is suppressed on the catalyst. The TiO2 surface of the catalyst, which is active for oxidation, is partially coated by the WO3 layer, which leads to a decrease in the amount of formed aldehyde adsorbed on the TiO2 surface. This suppresses subsequent decomposition of the aldehyde on the TiO2 surface and results in high aldehyde selectivity. The WO3/TiO2 catalyst can selectively oxidize various aromatic alcohols and is reusable without loss of catalytic activity or selectivity.  相似文献   

2.
采用水热法成功制备了MoS_2/WO3复合半导体光催化剂,分别通过SEM、TEM、EDS、XRD、Raman和DRS对催化剂的形貌,组成及结构进行表征,并用BET模型计算比表面积。对比发现球状MoS_2/WO3对罗丹明B(Rh B)的光降解效率明显高于纯WO3、片状MoS_2/WO3复合半导体。针对球状MoS_2/WO3复合半导体,分别研究了MoS_2不同负载量(0.5%,1%,2%,5%,10%)对Rh B光催化降解性能的影响,结果表明MoS_2含量为2%时催化效果最佳。同时,研究了溶液的p H值(p H=1,3,6,7,11)对光催化降解反应活性的影响,结果显示p H=6时降解率最高。当催化剂量增加到1 g·L-1时,30 min后Rh B降解率达到96.6%。球状MoS_2/WO3的瞬态光电流为0.050 6 m A·cm-2,比纯WO3提高了2.4倍。经过5次循环实验,球状MoS_2/WO3复合半导体催化剂仍能保持90%的高降解率。  相似文献   

3.
采用水热法成功制备了MoS2/WO3复合半导体光催化剂,分别通过SEM、TEM、EDS、XRD、Raman和DRS对催化剂的形貌,组成及结构进行表征,并用BET模型计算比表面积。对比发现球状MoS2/WO3对罗丹明B(RhB)的光降解效率明显高于纯WO3、片状MoS2/WO3复合半导体。针对球状MoS2/WO3复合半导体,分别研究了MoS2不同负载量(0.5%,1%,2%,5%,10%)对RhB光催化降解性能的影响,结果表明MoS2含量为2%时催化效果最佳。同时,研究了溶液的pH值(pH=1,3,6,7,11)对光催化降解反应活性的影响,结果显示pH=6时降解率最高。当催化剂量增加到1 g·L-1时,30min后RhB降解率达到96.6%。球状MoS2/WO3的瞬态光电流为0.050 6 mA·cm-2,比纯WO3提高了2.4倍。经过5次循环实验,球状MoS2/WO3复合半导体催化剂仍能保持90%的高降解率。  相似文献   

4.
In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (UV–vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).  相似文献   

5.
The structural properties of Au/TiO2 catalyst were studied by X-ray diffraction, UV-visible diffuse reflectance, photoluminescene, scanning transmission and electron microscope, and temperature programmed reduction. The photocatalytic activity of the catalysts was evaluated for the degradation of various azo-dyes such as methylene blue, methyl orange, reactive blue-4, and eosin-B under solar irradiation. It was found that TiO2 catalyst modified with gold exhibits higher percentage of degradation compared to starting TiO2. For example, TiO2 showed 35% of methyl orange degradation whereas gold modified TiO2 possessed 82%. Effect of different parameters such as pH and dye concentration has been evaluated and the photocatalytic activity was correlated with physico-chemical properties. The dye degradation rate followed first order kinetics.  相似文献   

6.
以TiO2纳米管为模板,采用多组分自组装结合水热法制备Bi2WO6/TiO2纳米管异质结构复合材料。通过多种技术如X射线衍射(XRD),X射线光电子能谱(XPS),N2吸附-脱附,扫描电镜(SEM),高分辨透射电镜(HRTEM)和紫外可见漫反射吸收光谱(UV-Vis DRS)考察所制备样品的组成、结构、形貌、光吸收和电子性质。Bi2WO6纳米片或纳米粒子分布在TiO2纳米管上,形成异质结构。随后,通过在紫外、可见和微波辅助光催化模式下降解染料罗丹明B(RhB)来评价复合催化剂的光催化活性。与TiO2纳米管和Bi2WO6相比,Bi2WO6/TiO2-35纳米管在多模式下表现出更优异的光催化活性。与紫外和可见降解模式相比,Bi2WO6/TiO2-35纳米管在微波辅助光催化模式下对RhB的降解效率最高。这种增强的光催化活性源于适量Bi2WO6的引入、纳米管独特的形貌特征和降解模式所引起的增强的量子效率。降解过程中的活性物种被证明是h+,·OH和·O2-自由基。而且,在微波辅助光催化模式下,可产生更多的·OH和·O2-自由基。  相似文献   

7.
Bi-layer WO3–TiO2 coatings have been synthesised on stainless steel (SS) substrates by consecutive cathodic electrodeposition of WO3 (from peroxytungstate solutions) and TiO2 electrosynthesis (from titanium oxosulfate solutions). The resulting TiO2–WO3/SS photoelectrodes have been screened for their photoresponse under ultraviolet (UV) and visible (vis) light illumination by photovoltammetry in supporting electrolyte (sodium sulfate) and malachite green (a typical dye) solutions. They were also evaluated for malachite green photooxidation during constant potential bulk photoelectrolysis. It was found that both photocurrent values and dye removal rates were higher at TiO2–WO3/SS than at plain WO3/SS photoelectrodes, under both UV and vis illumination (up to 85% and 67% malachite green degradation has been achieved respectively from its 10 ppm solutions after 2 h). The enhancement of the UV and, as reported here for the first time, vis photocatalytic activity of WO3 by the inclusion of TiO2 is interpreted by reduced electron-hole recombination rates due to electron transfer from TiO2 to WO3 (during UV activation) and hole transfer from WO3 to TiO2 (during UV and vis light activation).  相似文献   

8.
In this study, the photocatalytic degradation of organic reactive dyes have been investigated using MnTiO3/TiO2 heterojunction composites in the presence of electron acceptors under UV‐Visible light irradiation. This MnTiO3/TiO2 heterojunction composites were prepared by annealing different mass ratios of pyrophanite MnTiO3 (3–11 wt%) and TiO2 at 300°C. All the MnTiO3/TiO2 heterojunction composites were characterized by spectral techniques like X‐ray diffraction (XRD), scanning electron microscope (SEM) and diffused reflectance UV‐visible spectroscopic analysis (DRS). Among them, 9 wt% MnTiO3/TiO2 heterojunction composites exhibited higher photocatalytic activity for the degradation of Reactive Blue 4 (RB 4). The photocatalytic efficiency of 9 wt% MnTiO3/TiO2 heterojunction composites was further enhanced by the addition of substantial amount of electron acceptors like hydrogen peroxide (H2O2) and ammonium peroxydisulfate ([NH4]2S2O8). The presence of oxidants (electron acceptors) facilitates the fast degradation of dye solution even in higher concentration upto 200 mg/L. The photocatalytic activity of MnTiO3/TiO2 heterojunction composites was also studied for the degradation of other four different structured reactive dyes. The extent of mineralization of these organic reactive dyes during photocatalytic degradation was estimated from COD analysis. MnTiO3/TiO2 heterojunction composites was also found to have good photostability in the presence of oxidants.  相似文献   

9.
In order to improve the catalytic activity of Fenton catalyst, a composite catalyst, Fe/TiO2, with both visible-light photocatalytic and Fenton-like catalytic activities was synthesized via a brief solvothermal process. The XRD and SEM results indicated that Fe was dispersed homogeneously on the surface of TiO2 in the form of Fe2O3, and the loading of Fe did not have significant effects on the particle size and morphology of TiO2. The EDS results showed that the loading content of Fe was about 1.4 wt%. The photocatalytic results showed that the prepared Fe/TiO2 composite catalyst had excellent catalytic behaviors for terbuthylazine degradation under visible-irradiation with H2O2 assistance, the degradation ratio reached up to 90% after 120 min. The reinforced degradation performance were primarily attributable to the introduction of carrier TiO2, which expanded visible response range by H2O2 adsorption, and accelerated the cycle of Fe (Ⅱ)/Fe (Ⅲ). The fluorescent spectroscopy results revealed that the degradation process of terbuthylazine involved the generation and participation of active species such as hydroxyl radicals and superoxide radicals. This study is expected to provide a visual approach for designing a novel photo-Fenton catalyst to jointly utilize both photocatalytic and Fenton activities, which can be better applied to the actual use of organics purification in wastewater.  相似文献   

10.
A novel Cs0.33WO3/LDHs (CWLDH) composite was synthesized by simple two steps solvothermal method and first investigated as the photocatalyst for tetracycline (TC) and Congo red (CR) degradation under visible light irradiation. The CWLDH heterostructures catalysts were characterized by XRD, UV–Vis, SEM, XPS and BET. The composite CWLDH showed enhanced photocatalytic activity compared with pure Cs0.33WO 3 and NiAl‐LDH under identical experimental conditions. The enhanced photocatalytic activity was mainly attributed to the higher visible light‐absorbing ability, efficient electron–hole separation and prolonged lifetimes of photogenerated charges. The photocatalyst presented a high photocatalytic activity (92%) at the optimum of CWLDH ‐3 and initial TC concentration of 40 mg L−1. Besides, the degradation efficiency of TC is higher than 75% for reused CWLDH after four cycles, demonstrating that it could be used as a potential catalyst with good photocatalytic activity, stability and reusability. According to the experimental results, a possible photocatalytic mechanism of CWLDH was discussed.  相似文献   

11.
In the present study, titanium dioxide (TiO2) nano-particles were synthesized by sol–gel technique and then used to provide nano-TiO2 loaded cement samples at 1, 5, and 10 wt% for investigation of Malachite green pigment decomposition and Escherichia coli inactivation under UV irradiation. Surveys conducted on the synthesized TiO2 nano-particles showed a 100 % anatase phase with a mean particle size of 66.5 nm, surface area of 64.352 m2 g?1, and a porosity volume of 0.1278 cm3 g?1. Cement samples containing this catalyst exhibited stronger photocatalytic properties as compared to the same amount of pure catalyst. Considering both photocatalytic performance and cost of catalyst, 5 wt% titanium dioxide was suggested to be added to cement. By addition of 1 wt% polycarboxylic copolymer as super-plasticizer to the cement paste, the photocatalytic sample activities were reinforced so that a similar performance could be obtained at 1 wt% catalyst as compared to 5 wt% catalyst without super-plasticizer.  相似文献   

12.
This work presents the characterization and preparation of three‐dimensionally ordered macroporous TiO2 and TiO2/WO3 composite nanoparticles with enhanced visible‐light‐responsive properties for rhodamine B (Rh B) photodegradation. The 3DOM TiO2 and TiO2/WO3 composites were prepared through a dip‐infiltrating sol‐gel process using a polystyrene (PS) colloidal crystal template. The materials were characterized by SEM, TEM, XRD, BET, XPS and UV/Vis. The 3DOM TiO2/WO3 composite structures ranged from well‐defined 3DOM structures, which are highly ordered and interconnected via small pore windows, to collapsed three‐dimensional structures as the WO3 content increased. The photoresponse range and specific surface area of the composite increased with less than 0.025 g of WCl6. The 3DOM TiO2/WO3 composite with less than 0.025 g of WCl6 exhibited a higher catalytic activity than 3DOM TiO2 for the photocatalytic degradation of Rh B under simulated sunlight illumination.  相似文献   

13.
This study was focused on the photocatalytic activity of polyaniline (Pani)/iron doped titanium dioxide (Fe–TiO2) composites for the degradation of methylene blue as a model dye. TiO2 nanoparticles were doped with iron ions (Fe) using the wet impregnation method and the doped nanoparticles were further combined with Pani via an in situ polymerization method. For comparison purposes, Pani composites were also synthesized in the presence undoped TiO2. The photocatalyst and the composites were characterized by standard analytical techniques such as FTIR, XRD, SEM, EDX and UV–Vis spectroscopies. Fe–TiO2 and its composites exhibited enhanced photocatalytic activity under ultraviolet light irradiation. Improved photocatalytic activity of Fe–TiO2 was attributed to the dopant Fe ions hindering the recombination of the photoinduced charge carriers. Pani/Fe–TiO2 composite with 30?wt.% of TiO2 nanoparticles achieved 28% dye removal and the discoloration rate of methylene blue for the sample was 0.0025?min?1. FTIR, XRD, SEM, EDX and UV–Vis spectroscopies supported the idea that Fe ions integrated into TiO2 crystal structure and Pani composites were successfully synthesized in the presence of the photocatalyst nanoparticles. The novelty of this study was to investigate the photocatalytic activity of Pani composites, containing iron doped TiO2 and to compare their results with that of Pani/TiO2.  相似文献   

14.
An heterogeneous conducting polymer composite, poly(3-hexylthiophene)/TiO2 (P3HT/TiO2), was synthesized. The photocatalytic activity of P3HT alone and the composite was investigated for the first time by degrading a common dye under UV exposure. It was shown that the photocatalytic activity of the nanocomposites was higher compared to either the polymer or TiO2 alone. A simple mechanism was proposed to explain this observed synergetic effect.  相似文献   

15.
Semiconductor photocatalysis has the potential for achieving sustainable energy generation and degrading organic contaminants. In TiO2, the addition of carbonaceous nanomaterials has attracted extensive attention as a means to increase its photocatalytic activity. In this study, composites of TiO2 and carbon nanotubes (CNT) in various proportions were synthesized by the hydrothermal method. The crystalline structures, morphologies, and light absorption properties of the TiO2/CNT photocatalysts were characterized by PXRD, TEM and UV–Vis absorption spectra. The photocatalytic efficiency of the composites was evaluated by the degradation of Sudan (I) in UV–Vis light. Introducing 0.1–0.5 wt% CNT was shown to substantially improve the photoactivity of TiO2. The composite with 0.3 wt% CNT showed the best catalytic activity, and its reaction activation energy was calculated as 39.57 kJ mol?1 from experimental rates. The degradation products of Sudan (I) with different irradiation durations were characterized by Fourier transform infrared spectroscopy, and a degradation reaction process was proposed.  相似文献   

16.
Nano-sized TiO2–60 wt% SrO composite powders were synthesized from titanium isopropoxide and Sr(OH)2·8H2O by use of a sol–gel method. Ag spot-coated TiO2–60 wt% SrO composite powders containing 3, 5, or 7 wt% Ag were synthesized by hydrothermal-assisted attachment, by use of Ag hydrosol in a high-pressure bomb at 250 °C and 450 psi. Nano-sized Ag particles approximately 5–25 nm in diameter adhered to the TiO2–60 wt% SrO2 composite powders. The photocatalytic activity of Ag spot-coated TiO2–SrO powders in the degradation of phenol showed that all were highly active when irradiated with UV light. TiO2–60 wt% SrO composite powder spot-coated with 5 wt% Ag was more photocatalytically active under visible light than TiO2–SrO composite powder.  相似文献   

17.
The chemical reduction method was used to synthesize nickel oxide particles (NiO) and NiO supported on titanium dioxide (NiO/TiO2 nanocomposite). The composites were characterized through scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The morphological investigation showed that pseudocubic NiO are present in dispersed as well as agglomerated forms. Whereas NiO particles (<200 nm) are evenly deposited over the surface of TiO2 in NiO/TiO2 composite. The formation of NiO and NiO/TiO2 was also verified by XRD analysis. The synthesized NiO and NiO/TiO2 were used as photocatalysts for the degradation of Orange II (OII) dye. According to the degradation investigation, both NiO and NiO/TiO2 composite degraded OII dye more efficiently when exposed to UV light. The results indicated that NiO degraded 93% and NiO/TiO2 composites degraded approximately 96% of OII dye within 30 min. Both photocatalysts are highly sustainable and have significant OII dye degradation recyclability. Moreover, NiO and NiO/TiO2 exhibited promising bioactivities (antioxidant activity of 80%) against the pathogenic bacteria Citrobacter and Providencia, which is comparable with the standard ascorbic acid (88%).  相似文献   

18.
Sulfur doped ZnO/TiO2 nanocomposite photocatalysts were synthesized by a facile sol‐gel method. The structure and properties of catalysts were characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), UV‐vis diffusive reflectance spectroscopy (DRS) and N2 desorption‐adsorption isotherm. The XRD study showed that TiO2 was anatase phase and there was no obvious difference in crystal composition of various S‐ZnO/TiO2. The XPS study showed that the Zn element exists as ZnO and S atoms form SO2?4. The prepared samples had mesoporosity revealed by N2 desorption‐adsorption isotherm result. The degradation of Rhodamine B dye under visible light irradiation was chosen as probe reaction to evaluate the photocatalytic activity of the ZnO/TiO2 nanocomposite. The commercial TiO2 photocatalyst (Degussa P25) was taken as standard photocatalyst to contrast the prepared different photocatalyst in current work. The improvement of the photocatalytic activity of S‐ZnO/TiO2 composite photocatalyst can be attributed to the suitable energetic positions between ZnO and TiO2, the acidity site caused by sulfur doping and the enlargement of the specific area. S‐3.0ZnO/TiO2 exhibited the highest photocatalytic activity under visible light irradiation after Zn amount was optimized, which was 2.6 times higher than P25.  相似文献   

19.
TiO2/Bi2WO6 composite nanofibers have been successfully synthesized by a simple electrospinning process. XRD, SEM, HR-TEM, nitrogen adsorption–desorption isotherms and UV–visible diffuse reflectance spectra were used to characterize the composite nanofibers. The composite fibers with diameters about 100 nm was composed of nanoparticles and possessed of high specific surface area (49.6 m2 g?1) and porous structure. Besides, the TiO2/Bi2WO6 composite nanofibers exhibited excellent visible photocatalytic property in the photodegradation of methylene blue (MB), and over 97.2 % of MB was degraded within 5.5 h.  相似文献   

20.
In this research study, WO3/NaNbO3-coupled photocatalysts were synthesized at three WO3 mass ratios (15, 85, and 95 wt%) and characterized. These composites were characterized via X-ray powder diffraction, N2 physisorption, UV–Vis diffuse reflectance spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and photoluminescence techniques. For comparison, bare WO3 and NaNbO3 were also synthesized and characterized. 2,4-Dichlorophenoxyacetic acid (2,4-D) was degraded under visible light to evaluate its photocatalytic performance. The WO3 (95 wt%)/NaNbO3 composite showed higher photocatalytic activity than pure WO3 and NaNbO3 and even than the 15 and 85 wt% coupled materials; thus, the combination with the highest ratio of WO3 with respect to NaNbO3 showed increased photocatalytic activity compared with the bare materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号