首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the first reactive oxygen species (ROS) formed during irradiation of photosensitized cells is almost invariably singlet molecular oxygen (1O2), other ROS have been implicated in the phototoxic effects of photodynamic therapy (PDT). Among these are superoxide anion radical (O2), hydrogen peroxide (H2O2) and hydroxyl radical (OH). In this study, we investigated the role of H2O2 in the pro-apoptotic response to PDT in murine leukemia P388 cells. A primary route for detoxification of cellular H2O2 involves the peroxisomal enzyme catalase. Inhibition of catalase activity by 3-amino-1,2,4-triazole led to an increased apoptotic response. PDT-induced apoptosis was impaired by addition of an exogenous recombinant catalase analog (CAT- skl) that was specifically designed to enter cells and more efficiently localize in peroxisomes. A similar effect was observed upon addition of 2,2'-bipyridine, a reagent that can chelate Fe+2, a co-factor in the Fenton reaction that results in the conversion of H2O2 to OH. These results provide evidence that formation of H2O2 during irradiation of photosensitized cells contributes to PDT efficacy.  相似文献   

2.
We previously reported that photodynamic therapy (PDT) using intra‐articular methylene blue (MB) could be used to treat arthritis in mice caused by bioluminescent methicillin‐resistant Staphylococcus aureus (MRSA) either in a therapeutic or in a preventative mode. PDT accumulated neutrophils into the mouse knee via activation of chemoattractants such as inflammatory cytokines or chemokines. In this study, we asked whether PDT combined with antibiotics used for MRSA could provide added benefit in controlling the infection. We compared MB‐PDT alone, systemic administration of either linezolid (LZD) alone or vancomycin (VCM) alone or the combination of PDT with either LZD or VCM. Real‐time noninvasive imaging was used to serially follow the progress of the infection. PDT alone was the most effective, whereas LZD alone was ineffective and VCM alone showed some benefit. Surprisingly the addition of LZD or VCM reduced the therapeutic effect of PDT alone (< 0.05). Considering that PDT in this mouse model stimulates neutrophils to be antibacterial rather than actively killing the bacteria, we propose that LZD and VCM might inhibit the activation of inflammatory cytokines without eradicating the bacteria, and thereby reduce the therapeutic effect of PDT.  相似文献   

3.
The aim of this study was to detect the susceptibility of Ureaplasma urealyticum to methylene blue‐mediated photodynamic antimicrobial chemotherapy (PACT). Three U. urealyticum strains including the standard serotype 1 and 5, and a clinically collected strain were used in this study. Strains were first incubated in 96‐well culture plates in the presence of methylene blue with decreasing concentrations (from 1 to 0.015625 mg mL?1) for 20 or 60 min, and then submitted to irradiation with a light‐emitting diode laser with a power density of 100 mW cm?2 for 8, 17, 34 or 68 min. Regrowth of the strains was performed soon after irradiation. A significant inactivation effect was observed after PACT. Longer incubation time induced more extensive inactivation of U. urealyticum. No difference in response to PACT was observed between the two biovars of U. urealyticum. It was concluded that PACT had a significant inactivation effect on U. urealyticum, and it might be a promising alternative treatment for resistant U. urealyticum infections.  相似文献   

4.
Prussian blue (PB) modified titanate nanotubes (PB‐TiNT) have been synthesized by the reaction of Fe2+‐modified TiNT with hexacyanoferrate(III) ions. The rate constant for heterogeneous catalytic reaction between PB‐TiNT and H2O2 was found to be k=2×104 dm3 mol?1 s?1, which is an order of magnitude higher than the values of k reported for conventionally prepared, electrochemically deposited PB films. On the PB‐TiNT modified electrode with subnanomolar surface concentration of PB (Γ(PB)=2.8×10?11 mol/cm2), a stable, reproducible and linear response towards H2O2 was obtained in the concentration range 0.02–4 mM, with the sensitivity of 0.10 AM?1 cm?2 at ?150 mV.  相似文献   

5.
In this work, dual‐mode antibacterial conjugated polymer nanoparticles (DMCPNs) combined with photothermal therapy (PTT) and photodynamic therapy (PDT) are designed and explored for efficient killing of ampicillin‐resistant Escherichia coli (Ampr E. coli). The DMCPNs are self‐assembled into nanoparticles with a size of 50.4 ± 0.6 nm by co‐precipitation method using the photothermal agent poly(diketopyrrolopyrrole‐thienothiophene) (PDPPTT) and the photosensitizer poly[2‐methoxy‐5‐((2‐ethylhexyl)oxy)‐p‐phenylenevinylene] (MEH‐PPV) in the presence of poly(styrene‐co‐maleic anhydride) which makes nanoparticles disperse well in water via hydrophobic interactions. Thus, DMCPNs simultaneously possess photothermal effect and the ability of sensitizing oxygen in the surrounding to generate reactive oxygen species upon the illumination of light, which could easily damage resistant bacteria. Under combined irradiation of near‐infrared light (550 mW cm?2, 5 min) and white light (65 mW cm?2, 5 min), DMCPNs with a concentration of 9.6 × 10?4 µm could reach a 93% inhibition rate against Ampr E. coli, which is higher than the efficiency treated by PTT or PDT alone. The dual‐mode nanoparticles provide potential for treating pathogenic infections induced by resistant microorganisms in clinic.  相似文献   

6.
《Electroanalysis》2017,29(7):1805-1809
The development of flexible sensors could enable significant advances in clinical diagnosis, defense, and environmental monitoring. Flexible glass provides the flexibility and possesses stable chemical and physical properties. Here, we show that carbon graphite and silver/silver chloride inks can be printed onto flexible glass to construct amperometric sensors, and the sensors show sensitive and rapid detections of hydrogen peroxide. We anticipate that these results could provide exciting avenues for fundamental studies of flexible electronics and flexible bioelectronics, as well as a variety of applications in fields ranging from medical diagnosis to defense.  相似文献   

7.
Fluorescent dyes with multi‐functionality are of great interest for photo‐based cancer theranostics. However, their low singlet oxygen quantum yield impedes their potential applications for photodynamic therapy (PDT). Now, a molecular self‐assembly strategy is presented for a nanodrug with a remarkably enhanced photodynamic effect based on a dye‐chemodrug conjugate. The self‐assembled nanodrug possesses an increased intersystem crossing rate owing to the aggregation of dye, leading to a distinct singlet oxygen quantum yield (Φ(1O2)). Subsequently, upon red light irradiation, the generated singlet oxygen reduces the size of the nanodrug from 90 to 10 nm, which facilitates deep tumor penetration of the nanodrug and release of chemodrug. The nanodrug achieved in situ tumor imaging and potent tumor inhibition by deep chemo‐PDT. Our work verifies a facile and effective self‐assembly strategy to construct nanodrugs with enhanced performance for cancer theranostics.  相似文献   

8.
In this study, a laser‐induced graphene (LIG) loaded platinum nanoparticles (PtNPs) was prepared for precise, rapid and non‐enzymatic electrochemical detection of hydrogen peroxide (H2O2). The commercial PI films were used as the substrate of LIG. In order to improve the electrochemical performance of LIG, a layer of PtNPs catalyst was fabricated through a magnetron sputtering process on the surface of LIG (PtLIG). Under optimized conditions, a linear relationship between H2O2 reduction current and H2O2 concentration was recorded, the correlation coefficient R2 is 0.9919 with the detection limit of 0.1 μM (S/N=3) and the sensitivity of 248.4 μA mM?1cm?2. Moreover, the PtLIG exhibits excellent selectivity, reproducibility and repeatability. Because of these remarkable advantages, we believe that PtLIG will provide a wider range of applications in biosensors and bioelectronic devices.  相似文献   

9.
A novel N‐borylbenzyloxycarbonyl‐3,7‐dihydroxyphenoxazine fluorescent probe (NBCD) for detecting H2O2 in living cells is described. The probe could achieve high selectivity for detecting H2O2 over other biological reactive oxygen species (ROS). In addition, upon addition of H2O2, NBCD exhibited color change from colorless to pink, which makes it a “naked‐eye” probe for H2O2 detection. NBCD could not only be used to detect enzymatically generated H2O2 but also to detect H2O2 in living systems by using fluorescence spectroscopy, with a detection limit of 2 μm . Importantly, NBCD enabled the visualization of epidermal growth factor (EGF)‐stimulated H2O2 generation inside the cells.  相似文献   

10.
Cancer remains a major global malaise requiring the advent of new, efficient and low‐cost treatments. Photodynamic therapy, which combines a photosensitizer and photons to produce cytotoxic reactive oxygen species, has been established as an effective cancer treatment but has yet to become mainstream. One of the main limitations has been the paucity of photosensitizers that are effective over a wide range of wavelengths, can exert their cytotoxic effects in hypoxia, are easily synthesized and produce few if any side effects. To address these shortfalls, three new osmium‐based photosensitizers (TLD1822, TLD1824 and TLD1829) were synthesized and their photophysical and photobiological attributes determined. These photosensitizers are panchromatic (i.e. black absorbers), activatable from 200 to 900 nm and have strong resistance to photobleaching. In vitro studies show photodynamic therapy efficacy with both red and near‐infrared light in normoxic and hypoxic conditions, which translated to good in vivo efficacy of TLD1829 in a subcutaneous murine colon cancer model.  相似文献   

11.
The aim of this study was to evaluate the photodynamic effect of Sinoporphyrin sodium (DVDMS). In this study, Eca‐109 cells were treated with DVDMS (5 μg mL?1) and subjected to photodynamic therapy (PDT). The uptake and subcellular localization of DVDMS were monitored by flow cytometry and confocal microscopy. The phototoxicity of DVDMS was studied by MTT assay. The morphological changes were observed by scanning electron microscopy (SEM). DNA damage, reactive oxygen species (ROS) generation and mitochondria membrane potential (MMP) changes were analyzed by flow cytometry. Studies demonstrated maximal uptake of DVDMS occurred within 3 h, with a mitochondrial subcellular localization. MTT assays displayed that DVDMS could be effectively activated by light and the phototoxicity was much higher than photofrin under the same conditions. In addition, SEM observation indicated that cells were seriously damaged after PDT treatment. Furthermore, activation of DVDMS resulted in significant increases in ROS production. The generated ROS played an important role in the phototoxicity of DVDMS. DVDMS‐mediated PDT (DVDMS‐PDT) also induced DNA damage and MMP loss. It is demonstrated that DVDMS‐mediated PDT is an effective approach on cell proliferation inhibition of Eca‐109 cells.  相似文献   

12.
A novel hydrogen peroxide (H2O2) sensor was fabricated by using a submonolayer of 3‐mercaptopropionic acid (3‐MPA) adsorbed on a polycrystalline gold electrode further reacted with poly(amidoamine) (PAMAM) dendrimer (generation 4.0) to obtain a film on which Prussian Blue (PB) was later coordinated to afford a mixed and stable electrocatalytic layer for H2O2 reduction. On the basis of the electrochemical behaviors, atomic force microscopy (AFM) and X‐ray photoelectron spectra (XPS), it is suggested that the PB molecules are located within the dendritic structure of the surface attached PAMAM dendrimers. It was found that the PB/PAMAM/3‐MPA/Au modified electrode showed an excellent electrocatalytic activity for H2O2 reduction. The effects of applied potential and pH of solution upon the response of the modified electrode were investigated for an optimum analytical performance. Even in the presence of dissolved oxygen, the sensor exhibited highly sensitive and rapid response to H2O2. The steady‐state cathodic current responses of the modified electrode obtained at ?0.20 V (vs. SCE) in air‐saturated 0.1 mol L?1 phosphate buffer solution (PBS, pH 6.50) showed a linear relationship to H2O2 concentration ranging from 1.2×10?6 mol L?1 to 6.5×10?4 mol L?1 with a detection limit of 3.1×10?7 mol L?1. Performance of the electrode was evaluated with respected to possible interferences such as ascorbic acid and uric acid etc. The selectivity, stability, and reproducibility of the modified electrode were satisfactory.  相似文献   

13.
Methylene blue, 3, 7‐bis(dimethylamino)‐phenothiazin‐5‐ium chloride, is a reversible inhibitor of human butyrylcholinesterase (BChE) in the absence of light. In the presence of light and oxygen, methylene blue promotes irreversible inhibition of human BChE as a function of time, requiring 3 h irradiation to inhibit 95% activity. Inactivation was accompanied by a progressive loss of Coomassie‐stained protein bands on native and denaturing polyacrylamide gels, suggesting backbone fragmentation. Aggregation was not detected. MALDI–TOF/TOF mass spectrometry identified oxidized tryptophan (W52, 56, 231, 376, 412, 490, 522), oxidized methionine (M81, 144, 302, 532, 554, 555), oxidized histidine (H214), oxidized proline (P230), oxidized cysteine (C519) and oxidized serine (S215). A 20 min irradiation in the presence of methylene blue resulted in 17% loss of BChE activity, suggesting that BChE is relatively resistant to methylene blue‐catalyzed photoinactivation and that therefore this process could be used to sterilize BChE preparations.  相似文献   

14.
马洁  武海  朱亚琦 《化学通报》2006,69(12):916-920
利用共价键合法,将新亚甲蓝(NMB)与辣根过氧化酶(HRP)修饰于玻碳电极表面,制成一种新型的电流型H2O2传感器。探讨了该传感器在0·1mol/L磷酸缓冲溶液(pH=7·0)中的电化学性质。结果表明,NMB作为介体能够有效地在辣根过氧化酶和电极之间传递电子。测得电子转移系数为0·861,表观反应速率常数为1·27s-1。研究了传感器对H2O2的响应及动力学性质,米氏常数为8·27μmol/L,线性响应范围为2·5~100μmol/L。同时研究了pH、缓冲容量及温度等因素对H2O2传感器的影响。  相似文献   

15.
Photodynamic therapy (PDT) is a field with many applications including chemotherapy. Graphene quantum dots (GQDs) exhibit a variety of unique properties and can be used in PDT to generate singlet oxygen that destroys pathogenic bacteria and cancer cells. The PDT agent, methylene blue (MB), like GQDs, has been successfully exploited to destroy bacteria and cancer cells by increasing reactive oxygen species generation. Recently, combinations of GQDs and MB have been shown to destroy pathogenic bacteria via increased singlet oxygen generation. Here, we performed a spectrophotometric assay to detect and measure the uptake of GQDs, MB and several GQD‐MB combinations in MCF‐7 breast cancer cells. Then, we used a cell counting method to evaluate the cytotoxicity of GQDs, MB and a 1:1 GQD:MB preparation. Singlet oxygen generation in cells was then detected and measured using singlet oxygen sensor green. The dye, H2DCFDA, was used to measure reactive oxygen species production. We found that GQD and MB uptake into MCF‐7 cells occurred, but that MB, followed by 1:1 GQD:MB, caused superior cytotoxicity and singlet oxygen and reactive oxygen species generation. Our results suggest that methylene blue's effect against MCF‐7 cells is not potentiated by GQDs, either in light or dark conditions.  相似文献   

16.
Persister bacteria tolerate bactericidal antibiotics due to transient and reversible phenotypic changes. As these bacteria can limit the effectiveness of antibiotics to eradicate certain infections, their elimination is a relevant issue. Photodynamic therapy seems suitable for this purpose, but phenotypic tolerance to it has also been reported for Pseudomonas aeruginosa . To test whether any phenotypic feature could confer tolerance against both antibiotics and photoinactivation, survivors from exposures to light in the presence of methylene blue were treated with ofloxacin, an antibiotic effective on nongrowing bacteria. Susceptibility to ofloxacin was normal in these bacteria in spite of their increased ability to survive photodynamic inactivation, suggesting the absence of cross‐tolerance. It thus seemed possible to use one of these treatments to eliminate bacteria which had phenotypic tolerance to the other. To test this strategy, persister bacteria emerging from ofloxacin treatments were submitted to the action of light and methylene blue while the antibiotic remained in the bacterial suspension. Persisters lost their clonogenic ability under these conditions and the effects of the treatments seemed to be synergistic. These observations suggest that photodynamic antimicrobial therapy could be used as a complement to antibiotic treatments to eliminate persister bacteria from localized infections.  相似文献   

17.
Photodynamic therapy (PDT) exhibits great potential for cancer therapy, but still suffers from nonspecific photosensitivity and poor penetration of photosensitizer. Herein, a smart perylene monoimide‐based nanocluster capable of enzyme‐triggered disassembly is reported as an activatable and deeply penetrable photosensitizer. A novel carboxylesterase (CE)‐responsive tetrachloroperylene monoimide (P1) was synthesized and assembled with folate‐decorated albumins into a nanocluster ( FHP ) with a diameter of circa 100 nm. Once P1 is hydrolyzed by the tumor‐specific CE, FHP disassembles into ultrasmall nanoparticles (ca. 10 nm), facilitating the deep tumor penetration of FHP . Furthermore, such enzyme‐triggered disassembly of FHP leads to enhanced fluorescence intensity (ca. 8‐fold) and elevated singlet oxygen generation ability (ca. 4‐fold), enabling in situ near‐infrared fluorescence imaging and promoted PDT. FHP permits remarkable tumor inhibition in vivo with minimal side effects through imaging‐guided, activatable, and deep PDT. This work confirms that this cascaded multifunctional control through enzyme‐triggered molecular disassembly is an effective strategy for precise cancer theranostics.  相似文献   

18.
在KH2PO4- Na2HPO4缓冲溶液中,离子缔合物[MB]+·[B(C6H5)4]–可发射强而稳定的荧光,牛血清蛋白(BSA)能使[MB]+·[B(C6H5)4]–的荧光信号显著猝灭,聚乙二醇(PEG)对荧光信号猝灭的有强的增敏作用,加PEG比不加PEG时,ΔF(= F0-F,其中,F0与F分别为试剂空白和试液的荧光强度)值提高了9.1倍,且ΔF与BSA含量具有良好的线性关系,据此建立了新型荧光探针荧光猝灭法测定痕量蛋白质的新方法。本方法的线性范围为0.11 ~ 88.0 ag/mL,检出限:22.0 ag /mL BSA,灵敏度很高,并成功用于人血清样品中蛋白含量的测定。同时探讨了新方法的反应机理。在相同条件下,新方法可分别测定BSA、人血清白蛋白(human serum albumin,HAS)、卵蛋白(ovalbumin,OVA )、γ-球蛋白(γ-globulin,γ-G)及血清、脑脊液样品中蛋白质总量。  相似文献   

19.
A highly selective and sensitive catalytic method for the determination of trace amounts of titanium(IV) was developed. The method is based on the catalytic effect of titanium(IV) on the methylene blue‐ascorbic acid redox reaction. The reaction was followed spectrophotometrically by measuring the change in absorbance of methylene blue at 665 nm, 5 minutes after the initiation of the reaction. In this study experimental parameters were optimized and the effect of the presence of various cations and some anions on the determination of titanium(IV) was examined. The calibration graph was linear in the range of 3‐25 ng mL?1 of titanium(IV). The relative standard deviation for the determination of 10 and 20 ng mL?1 of titanium(IV) were 2.64% and 1.51%, respectively (n = 8). The detection limit calculated from three times of standard deviation of blank 3Sb was 0.6 ng mL?1. The method was successfully applied to the determination of titanium(IV) in tap water and ore samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号