首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastic Fiber-Associated Proteins of Skin in Development and Photoaging   总被引:1,自引:0,他引:1  
Abstract— We sought to use antibodies against structural (tropoelastin, fibrillin) and nonstructural (decay-accelerating factor [DAF], serum amyloid P [SAP]) components of elastic fibers to characterize fiber structure in neonatal skin, normal adult skin and adult skin with solar elastosis from advanced photoaging. We found by immunohisto-chemistry and by western blotting that DAF, unlike SAP, is present on cutaneous elastic fibers in neonates and young children, suggesting that DAF may play an early, integral role in protecting elastic fibers from destruction by complement. The most superficial portion of oxytalan fibers stained with antibodies against fibrillin and DAF, while anti-tropoelastin stained only the deeper portion of oxytalan fibers. This suggests that deep oxytalan fibers are composed of both elastin and microfibrils, while the most superficial component is composed solely of microfibrillar proteins. Solar elastosis showed increased fibrillin, DAF, tropoelastin and SAP. Thus, solar elastosis is composed of both microfibrillar and elastin proteins.  相似文献   

2.
Miscued communication often leads to misfolding and aggregation of the proteins involved in many diseases. Owing to the ensemble average property of conventional techniques, detailed communication diagrams are difficult to obtain. Mechanical unfolding affords an unprecedented perspective on cooperative transitions by observing a protein along a trajectory defined by two mutated cysteine residues. Nevertheless, this approach requires tedious sample preparation at the risk of altering native protein conformations. To address these issues, we applied click chemistry to tether a protein to the two dsDNA handles through primary amines in lysine residues as well as at the N terminus. As a proof of concept, we used laser tweezers to mechanically unfold and refold calmodulin along 36 trajectories, maximally allowed by this strategy in a single batch of protein preparation. Without a priori knowledge of the particular residues to which the double‐stranded DNA handles attach, we used hierarchical cluster analysis to identify 20 major trajectories, according to the size and the pattern of unfolding transitions. We dissected the cooperativity into all‐or‐none and partially cooperative events, which represent strong and weak high‐order interactions in proteins, respectively. Although the overall cooperativity is higher within the N or C lobe than that between the lobes, the all‐or‐none cooperativity is anisotropic among different the unfolding trajectories and becomes relatively more predominant when the size of the protein segments increases. The average cooperativity for all‐or‐none transitions falls within the expected range observed by ensemble techniques, which supports the hypothesis that unfolding of a free protein can be reconstituted from individual trajectories.  相似文献   

3.
Understanding the structure–function relationship of biomolecules containing DNA has motivated experiments aimed at determining molecular structure using methods such as small‐angle X‐ray and neutron scattering (SAXS and SANS). SAXS and SANS are useful for determining macromolecular shape in solution, a process which benefits by using atomistic models that reproduce the scattering data. The variety of algorithms available for creating and modifying model DNA structures lack the ability to rapidly modify all‐atom models to generate structure ensembles. This article describes a Monte Carlo algorithm for simulating DNA, not with the goal of predicting an equilibrium structure, but rather to generate an ensemble of plausible structures which can be filtered using experimental results to identify a sub‐ensemble of conformations that reproduce the solution scattering of DNA macromolecules. The algorithm generates an ensemble of atomic structures through an iterative cycle in which B‐DNA is represented using a wormlike bead–rod model, new configurations are generated by sampling bend and twist moves, then atomic detail is recovered by back mapping from the final coarse‐grained configuration. Using this algorithm on commodity computing hardware, one can rapidly generate an ensemble of atomic level models, each model representing a physically realistic configuration that could be further studied using molecular dynamics. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
The surface structure and surface mechanical properties of low‐ and high‐density polyethylene were characterized by atomic force microscopy (AFM) as the polymers were stretched. The surfaces of both materials roughened as they were stretched. The roughening effect is attributed to deformation of nodular structures, related to bulk spherulites, at the surface. The surface‐roughening effect is completely reversible at tensile strains in the elastic regime and partially reversible at tensile strains in the plastic regime until the polymers are irreversibly drawn into fibers. AFM force versus distance interaction curves, used to measure changes in the stiffness of the surface and the surface elastic modulus as a function of elongation, show that the surfaces become softer as the polymers are drawn into fibers at high strains. At low elastic strains, however, the surface elastic modulus of HDPE increases—attributed to elastic energy stored by the amorphous regions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2263–2274, 2001  相似文献   

5.
Under the influence of a changed environment, amyloid‐forming proteins partially unfold and assemble into insoluble β‐sheet rich fibrils. Molecular‐level characterization of these assembly processes has been proven to be very challenging, and for this reason several simplified model systems have been developed over recent years. Herein, we present a series of three de novo designed model peptides that adopt different conformations and aggregate morphologies depending on concentration, pH value, and ionic strength. The design strictly follows the characteristic heptad repeat of the α‐helical coiled‐coil structural motif. In all peptides, three valine residues, known to prefer the β‐sheet conformation, have been incorporated at the solvent‐exposed b, c, and f positions to make the system prone to amyloid formation. Additionally, pH‐controllable intramolecular electrostatic repulsions between equally charged lysine (peptide A) or glutamate (peptide B) residues were introduced along one side of the helical cylinder. The conformational behavior was monitored by circular dichroism spectroscopic analysis and thioflavin T fluorescence, and the resulting aggregates were further characterized by transmission electron microscopy. Whereas uninterrupted α‐helical aggregates are found at neutral pH, Coulomb repulsions between lysine residues in peptide A destabilize the helical conformation at acidic pH values and trigger an assembly into amyloid‐like fibrils. Peptide B features a glutamate‐based switch functionality and exhibits opposite pH‐dependent folding behavior. In this case, α‐helical aggregates are found under acidic conditions, whereas amyloids are formed at neutral pH. To further validate the pH switch concept, peptide C was designed by including serine residues, thus resulting in an equal distribution of charged residues. Surprisingly, amyloid formation is observed at all pH values investigated for peptide C. The results of further investigations into the effect of different salts, however, strongly support the crucial role of intramolecular charge repulsions in the model system presented herein.  相似文献   

6.
The role of formaldehyde (HCHO) in vegetable‐aldehyde–collagen cross‐linking reaction was investigated at the B3LYP/6‐31+G(d) level, where lysine (LYS) was used as model of collagen and catechin (EC) as model of condensed vegetable tannin. Atomic charge and Frontier molecular orbital analysis show that intermediates formed by HCHO reacting with LYS or EC, that is, MLYS, MEC‐6, and MEC‐8, still have both nucleophilic and electrophilic sites, which are elements to form ternary cross‐linking in vegetable‐aldehyde–collagen system. The analysis of energy gap between HOMO (highest occupied molecular orbit) and LUMO (lowest unoccupied molecular orbit) indicate that the intermediate of HCHO–LYS residues (MLYS) can further react with free HCHO to form product P‐N(CH2OH)2 (P‐N‐represents amino acid residue; N represents nitrogen atom on side chain), but the reaction of intermediate MLYS with free EC is difficult to take place. So, the probability of forming ternary cross‐linking structure of amino acid residue–HCHO–EC is small, if HCHO is added before vegetable tannin in vegetable‐aldehyde–collagen system. However, the reactions of EC–HCHO intermediates (MEC‐6 and MEC‐8) with free amino acids, HCHO–amino acid residue intermediate (MLYS), as well as with other EC–HCHO intermediates (MEC‐6 and MEC‐8), are very easy to take place. The reaction enthalpy also shows that the cross‐linking tendency is favorable in thermodynamics. So, it can be deduced that covalent cross‐linking among amino side chain of collagen and vegetable tannin may take place when aldehyde is added after vegetable tannin. In this way, a multiple point cross‐linking reaction occurs to create a high stabilization of collagen. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
The present paper elaborates on the design of classifiers based on cross‐correlation‐based principal component analysis (PCA) and Sammon's nonlinear mapping (NLM) using current signals obtained from electronic tongue (e‐tongue) with commercial mineral water samples available in the Indian market. The pulse‐voltammetric method is used to capture the electroanalytical/electrochemical characteristics of the sampled mineral waters by considering a real model for the liquid–electrode interface in a given e‐tongue apparatus. Then the cross‐correlation coefficients between the output and input signals are determined. Both PCA and Sammon's NLM create a subspace from high‐dimensional mineral water data by considering the principal eigenvectors and minimising the stress function, respectively. The proposed cross‐correlation‐based PCA and Sammon's classifiers establish the highest separation distance among the investigated water brands and carries out the authentication of more than one unknown sample of the same brand with a certain degree of variability with respect to their sources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Mass spectrometry was used to probe the preferred locations of trans‐4‐hydroxy‐2‐nonenal (HNE) addition to the cysteine, histidine, and lysine residues of human serum albumin (HSA). Considering only those modified peptides supported by high mass accuracy Orbitrap precursor ion measurements (high confidence hits), with HNE:HSA ratios of 1:1 and 10:1, 3 and 15 addition sites, respectively, were identified. Using less stringent criteria, a total of 34 modifications were identified at the higher concentration. To gain quantitative data, iTRAQ labeling studies were completed. Previous work had identified Cys34, the only free cysteine, as the most reactive residue in HSA, and we have found that Lys199, His242/7, and His288 are the next most reactive residues. Although the kinetic data indicate that the lysines and histidines can react at relatively similar rates, the results show that lysine addition is much less favorable thermodynamically; under our reaction conditions, lysine addition generally does not go to completion. This suggests that under physiological conditions, HNE addition to lysine is only relevant in situations where unusually high HNE concentrations or access to irreversible secondary reactions are found. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The core histones, H2A, H2B, H3 and H4, undergo post‐translational modifications (PTMs) including lysine acetylation, methylation and ubiquitylation, arginine methylation and serine phosphorylation. Lysine residues may be mono‐, di‐ and trimethylated, the latter resulting in an addition of mass to the protein that differs from acetylation by only 0.03639 Da, but that can be distinguished either on high‐performance mass spectrometers with sufficient mass accuracy and mass resolution or via retention times. Here we describe the use of chemical derivatization to quantify methylated and acetylated histone isoforms by forming deuteroacetylated histone derivatives prior to tryptic digestion and bottom‐up liquid chromatography‐mass spectrometric analysis. The deuteroacetylation of unmodified or mono‐methylated lysine residues produces a chemically identical set of tryptic peptides when comparing the unmodified and modified versions of a protein, making it possible to directly quantify lysine acetylation. In this work, the deuteroacetylation technique is used to examine a single histone H3 peptide with methyl and acetyl modifications at different lysine residues and to quantify the relative abundance of each modification in different deacetylase and methylase knockout yeast strains. This application demonstrates the use of the deuteroacetylation technique to characterize modification ‘cross‐talk’ by correlating different PTMs on the same histone tail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Targeted covalent inhibitors have gained widespread attention in drug discovery as a validated method to circumvent acquired resistance in oncology. This strategy exploits small‐molecule/protein crystal structures to design tightly binding ligands with appropriately positioned electrophilic warheads. Whilst most focus has been on targeting binding‐site cysteine residues, targeting nucleophilic lysine residues can also represent a viable approach to irreversible inhibition. However, owing to the basicity of the ϵ ‐amino group in lysine, this strategy generates a number of specific challenges. Herein, we review the key principles for inhibitor design, give historical examples, and present recent developments that demonstrate the potential of lysine targeting for future drug discovery.  相似文献   

11.
The prediction of secondary structure is a fundamental and important component in the analytical study of protein structure and functions. How to improve the predictive accuracy of protein structural classification by effectively incorporating the sequence‐order effects is an important and challenging problem. In this study, a new method, in which the support vector machine combines with discrete wavelet transform, is developed to predict the protein structural classes. Its performance is assessed by cross‐validation tests. The predicted results show that the proposed approach can remarkably improve the success rates, and might become a useful tool for predicting the other attributes of proteins as well. © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

12.
Chemical cross‐linking, combined with mass spectrometry, has been applied to map three‐dimensional protein structures and protein–protein interactions. Proper choice of the cross‐linking agent, including its reactive groups and spacer arm length, is of great importance. However, studies to understand the details of reactivity of the chemical cross‐linkers with proteins are quite sparse. In this study, we investigated chemical cross‐linking from the aspects of the protein structures and the cross‐linking reagents involved, by using two structurally well‐known proteins, glyceraldehyde 3‐phosohate dehydrogenase and ribonuclease S. Chemical cross‐linking reactivity was compared using a series of homo‐ and hetero‐bifunctional cross‐linkers, including bis(sulfosuccinimidyl) suberate, dissuccinimidyl suberate, bis(succinimidyl) penta (ethylene glycol), bis(succinimidyl) nona (ethylene glycol), m‐maleimidobenzoyl‐N‐hydroxysulfosuccinimide ester, 2‐pyridyldithiol‐tetraoxaoctatriacontane‐N‐hydrosuccinimide and succinimidyl‐[(N‐maleimidopropionamido)‐tetracosaethyleneglycol]ester. The protein structure itself, especially the distances between target amino acid residues, was found to be a determining factor for the cross‐linking efficiency. Moreover, the reactive groups of the chemical cross‐linker also play an important role; a higher cross‐linking reaction efficiency was found for maleimides compared to 2‐pyrimidyldithiols. The reaction between maleimides and sulfhydryl groups is more favorable than that between N‐hydroxysuccinimide esters and amine groups, although cysteine residues are less abundant in proteins compared to lysine residues. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Acylation of proteins with fatty acids is important for the regulation of membrane association, trafficking, subcellular localization, and activity of many cellular proteins. While significant progress has been made in our understanding of the two major forms of protein acylation with fatty acids, N‐myristoylation and S‐palmitoylation, studies of the acylation of lysine residues, within proteins, with fatty acids have lagged behind. Demonstrated here is the use of integrative chemical biology approaches to examine human sirtuins as de‐fatty‐acid acylases in vitro and in cells. Photo‐crosslinking chemistry is used to investigate enzymes which recognize fatty‐acid acylated lysine. Human Sirt2 was identified as a robust lysine de‐fatty‐acid acylase in vitro. The results also show that Sirt2 can regulate the acylation of lysine residues, of proteins, with fatty acids within cells.  相似文献   

14.
Aggregation of polyglutamine peptides with β‐sheet structures is related to some important neurodegenerative diseases such as Huntington's disease. However, it is not clear how polyglutamine peptides form the β‐sheets and aggregate. To understand this problem, we performed all‐atom replica‐exchange molecular dynamics simulations of one and two polyglutamine peptides with 10 glutamine residues in explicit water molecules. Our results show that two polyglutamine peptides mainly formed helix or coil structures when they are separated, as in the system with one‐polyglutamine peptide. As the interpeptide distance decreases, the intrapeptide β‐sheet structure sometimes appear as an intermediate state, and finally the interpeptide β‐sheets are formed. We also find that the polyglutamine dimer tends to form the antiparallel β‐sheet conformations rather than the parallel β‐sheet, which is consistent with previous experiments and a coarse‐grained molecular dynamics simulation. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
NMR spectroscopy is used to detect site‐specific intermolecular short‐range contacts in a membrane–protein–chaperone complex. This is achieved by an “orthogonal” isotope‐labeling scheme that permits the unambiguous detection of intermolecular NOEs between the well‐folded chaperone and the unfolded substrate ensemble. The residues involved in these contacts are part of the chaperone–substrate contact interface. The approach is demonstrated for the 70 kDa bacterial Skp‐tOmpA complex.  相似文献   

16.
17.
As‐spun poly(ethylene‐2,6‐naphthalate) (PEN) fibers (i.e., precursors) prepared from high molecular weight polymer were drawn and/or annealed under various conditions. Structure and property variations taking place during the treatment process were followed via wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering, differential scanning calorimetry (DSC), and mechanical testing. Both the WAXS and DSC measurements of the cold‐drawn samples stretched from a low‐speed‐spun amorphous fiber indicate that strain‐induced crystallization can occur at a temperature below the glass‐transition temperature and that the resultant crystal is in the α‐form modification. In contrast, when the same precursor was subjected to constrained annealing, its amorphous characteristics remained unchanged even though the annealing was performed at 200 °C. These results may imply that the application of stretching stress is more important than elevated temperatures in producing α‐form crystallization. The crystalline structure of the hot‐drawn samples depends significantly on the morphology of the precursor fibers. When the precursor was wound at a very low speed and in a predominantly amorphous state, hot drawing induced the formation of crystals that were apparently pure α‐form modification. For the β‐form crystallized precursors wound at higher speeds, a partial crystalline transition from the β form to the α form was observed during the hot drawing. In contrast with the mechanical properties of the as‐spun fibers, those of the hot‐drawn products are not improved remarkably because the draw ratio is extremely limited for most as‐spun fibers in which an oriented crystalline structure has already formed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1424–1435, 2000  相似文献   

18.
We developed a software package (RedMD) to perform molecular dynamics simulations and normal mode analysis of reduced models of proteins, nucleic acids, and their complexes. With RedMD one can perform molecular dynamics simulations in a microcanonical ensemble, with Berendsen and Langevin thermostats, and with Brownian dynamics. We provide force field and topology generators which are based on the one‐bead per residue/nucleotide elastic network model and its extensions. The user can change the force field parameters with the command line options that are passed to generators. Also, the generators can be modified, for example, to add new potential energy functions. Normal mode analysis tool is available for elastic or anisotropic network models. The program is written in C and C++ languages and the structure/topology of a molecule is based on an XML format. OpenMP technology for shared‐memory architectures was used for code parallelization. The code is distributed under GNU public licence and available at http://bionano.icm.edu.pl/software/ . © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

19.
A range of isoxazole‐containing amino acids was synthesized that displaced acetyl‐lysine‐containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4‐mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the isoxazole‐containing peptides are comparable to those of a hyperacetylated histone H4‐mimicking cognate peptide, and demonstrated a dependence on the position at which the unnatural residue was incorporated. An isoxazole‐based alkylating agent was developed to selectively alkylate cysteine residues in situ. Selective monoalkylation of a histone H4‐mimicking peptide, containing a lysine to cysteine residue substitution (K12C), resulted in acetyl‐lysine mimic incorporation, with high affinity for the BRD4 bromodomain. The same technology was used to alkylate a K18C mutant of histone H3.  相似文献   

20.
We present the MALDI‐TOF/TOF‐MS analyses of various hapten–bovine serum albumin (BSA) neoglycoconjugates obtained by squaric acid chemistry coupling of the spacer‐equipped, terminal monosaccharide of the O‐specific polysaccharide of Vibrio cholerae O1, serotype Ogawa, to BSA. These analyses allowed not only to calculate the molecular masses of the hapten–BSA neoglycoconjugates with different hapten–BSA ratios (4.3, 6.6 and 13.2) but, more importantly, also to localize the covalent linkages (conjugation sites) between the hapten and the carrier protein. Determination of the site of glycation was based on comparison of the MALDI‐TOF/TOF‐MS analysis of the peptides resulting from the digestion of BSA with similar data resulting from the digestion of BSA glycoconjugates, followed by sequencing by MALDI‐TOF/TOF‐MS/MS of the glycated peptides. The product‐ion scans of the protonated molecules were carried out with a MALDI‐TOF/TOF‐MS/MS tandem mass spectrometer equipped with a high‐collision energy cell. The high‐energy collision‐induced dissociation (CID) spectra afforded product ions formed by fragmentation of the carbohydrate hapten and amino acid sequences conjugated with fragments of the carbohydrate hapten. We were able to identify three conjugation sites on lysine residues (Lys235, Lys437 and Lys455). It was shown that these lysine residues are very reactive and bind lysine specific reagents. We presume that these Lys residues belong to those that are considered to be sterically more accessible on the surface of the tridimensional structure. The identification of the y‐series product ions was very useful for the sequencing of various peptides. The series of a‐ and b‐product ions confirmed the sequence of the conjugated peptides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号