首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Resilin, a protein found in insect cuticles, is renowned for its outstanding elastomeric properties. The authors' laboratory previously developed a recombinant protein, which consisted of consensus resilin‐like repeats from Anopheles gambiae, and demonstrated its potential in cartilage and vascular engineering. To broaden the versatility of the resilin‐like protein, this study utilizes a cleavable crosslinker, which contains a disulfide bond, to develop smart resilin‐like hydrogels that are redox‐responsive. The hydrogels exhibit a porous structure and a stable storage modulus (G′) of ≈3 kPa. NIH/3T3 fibroblasts cultured on hydrogels for 24 h have a high viability (>95%). In addition, the redox‐responsive hydrogels show significant degradation in a reducing environment (10 mm glutathione (GSH)). The release profiles of fluorescently labeled dextrans encapsulated within the hydrogels are assessed in vitro. For dextran that is estimated to be larger than the mesh size of the gel, faster release is observed in the presence of reducing agents due to degradation of the hydrogel networks. These studies thus demonstrate the potential of using these smart hydrogels in a variety of applications ranging from scaffolds for tissue engineering to drug delivery systems that target the intracellular reductive environments of tumors.  相似文献   

2.
Injectable delivery vehicles in tissue engineering are often required for successful tissue formation in a minimally invasive manner. Shear‐reversibly crosslinked hydrogels, which can recover gel structures from shear‐induced breakdown, can be useful as an injectable, because gels can flow as a liquid when injected but re‐gel once placed in the body. In this study, injectable and shear‐reversible alginate hydrogels were prepared by combination crosslinking using cell‐crosslinking and ionic crosslinking techniques. The addition of a small quantity of calcium ions decreased the number of cells that were required to form cell‐crosslinked hydrogels without changing the shear reversibility of the system. The physical properties and gelation behavior of the gels were dependent on the concentration of both the cells and the calcium ions. We found that gels crosslinked by combination crosslinking methods were effective to engineer cartilage tissues in vivo. Using both ionic and cell‐crosslinking methods to control the gelation behavior may allow the design of novel injectable systems that can be used to deliver cells and other therapeutics for minimally invasive therapy, including tissue engineering.

  相似文献   


3.
Self‐healing supramolecular hydrogels have emerged as a novel class of biomaterials that combine hydrogels with supramolecular chemistry to develop highly functional biomaterials with advantages including native tissue mimicry, biocompatibility, and injectability. These properties are endowed by the reversibly cross‐linked polymer network of the hydrogel. These hydrogels have great potential for realizing yet to be clinically translated tissue engineering therapies. This review presents methods of self‐healing supramolecular hydrogel formation and their uses in tissue engineering as well as future perspectives.  相似文献   

4.
The combination of bioactive components such as calcium phosphates and fibrous structures are encouraging niche‐mimetic keys for restoring bone defects. However, the importance of hemocompatibility of the membranes is widely ignored. Heparin‐loaded nanocomposite poly(ε‐caprolactone) (PCL)‐α‐tricalcium phosphate (α‐TCP) fibrous membranes are developed to provide bioactive and hemocompatible constructs for bone tissue engineering. Nanocomposite membranes are optimized based on bioactivity, mechanical properties, and cell interaction. Consequently, various concentrations of heparin molecules are loaded within nanocomposite fibrous membranes. In vitro heparin release profiles reveal a sustained release of heparin over the period of 14 days without an initial burst. Moreover, heparin encapsulation enhances mesenchymal stem cell (MSC) attachment and proliferation, depending on the heparin content. It is concluded that the incorporation of heparin within TCP–PCL fibrous membranes provides the most effective cellular interactions through synergistic physical and chemical cues.  相似文献   

5.
The ability to mimic the chemical, physical and mechanical properties of the natural extra‐cellular matrix is a key requirement for tissue engineering scaffolds to be successful. In this study, we successfully fabricated aligned nanofibrous multi‐component scaffolds for bone tissue engineering using electrospinning. The chemical features were mimicked by using the natural components of bone: collagen and nano‐hydroxyapatite along with poly[(D ,L ‐lactide)‐co‐glycolide] as the major component. Anisotropic features were mimicked by aligning the nanofibers using a rotating mandrel collector. We evaluated the effect of incorporation of nano‐HA particles to the system. The morphology and mechanical properties revealed that,at low concentrations, nano‐HA acted as a reinforcement. However, at higher nano‐HA loadings, it was difficult to disrupt aggregations and, hence, a detrimental effect was observed on the overall scaffold properties. Thermal analysis showed that there were slight interactions between the individual components even though the polymers existed as a two‐phase system. Preliminary in vitro cell‐culture studies revealed that the scaffold supported cell adhesion and spreading. The cells assumed a highly aligned morphology along the direction of fiber orientation. Protein adsorption experiments revealed that the synergistic effect of increased surface area and the presence of nano‐HA in the polymer matrix enhanced total protein adsorption. Crosslinking with 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride resulted in improved mechanical properties of the scaffolds and improved degradation stability, under physiological conditions.

  相似文献   


6.
7.
Previous studies on hydrogels crosslinked by acrylated PEO99–PPO65–PEO99 triblock copolymer (F127DA) micelles demonstrate outstanding strength and toughness, which is attributed to the efficient energy dissipation through the hydrophobic association in the micelles. The current study further focuses on how the solvent property affects the structures and the mechanical properties of F127DA micelle crosslinked polyacrylamide gels. Binary solvents comprised of dimethyl sulfoxide (DMSO) and water are used to adjust the polymer/solvent interactions, which consequently tune the conformations of the polymer chains in the network. The presence of DMSO significantly decreases the strength but increased the stretchability of the gels, whereas the overall tensile toughness remained unchanged. In situ small‐angle X‐ray scattering measurements reveal the deformation of micelles along with the stretching direction. A structure evolution mechanism upon solvent change is proposed, according to the experimental observations, to explain influence of solvent quality on the mechanical properties of the micelle‐crosslinked gels. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 473–483  相似文献   

8.
9.
The nonlinear effect at small strains (Payne effect) has been investigated in the case of silica‐filled styrene‐butadiene rubber. The originality of this study lies in the careful preparation of samples in order to fix all parameters except one, that is, the modification of the silica surface by grafting silane (introduced at different concentrations) via reactive mixing. The organosilane can be either a coupling or a covering surface treatment with an octyl alkyl chain. A careful morphological investigation has been performed prior to mechanical characterization and silica dispersion was found to be the same whatever the type and the amount of silane. The increasing amount of covering agents was found to reduce the amplitude of the Payne effect. A similar decrease is observed for low coupling agent concentration. At higher concentrations, the evolution turns through an increase due to the contribution of the covalent bonds between the matrix and the silica acting as additional crosslinking. The discussion of the initial modulus was done in the frame of both the filler–filler and filler–polymer models. It is unfortunately not possible to distinguish both scenarios, because filler–filler and filler–matrix interactions are modified in the same manner by the grafting covering agent. On the other hand, the reversible decrease of the modulus versus strain (Payne effect) is interpreted in terms of debonding of the polymeric chains from the filler surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 286–298, 2007  相似文献   

10.
Tissue expansion is used by plastic/reconstructive surgeons to grow additional skin/tissue for replacing or repairing lost or damaged soft tissues. Recently, hydrogels have been widely used for tissue expansion applications. Herein, a self‐inflating tissue expander blend composition from three different molecular weights (2, 6, and 10 kDa) of poly (ethylene glycol) diacrylate (PEGDA) hydrogel with tunable mechanical and swelling properties is presented. The in vitro results demonstrate that, of the eight studied compositions, P6 (PEGDA 6 kDa:10 kDa (50:50)) and P8 (PEGDA 6 kDa:10 kDa (35:65)) formulations provide a balance of mechanical property and swelling capability suitable for tissue expansion. Furthermore, these expanders can be compressed up to 60% of their original height and can be loaded and unloaded cyclically at least ten times with no permanent deformation. The in vivo results indicate that these two engineered blend compositions are capable to generate a swelling pressure sufficient to dilate the surrounding tissue while retaining their original shape. The histological analyses reveal the formation of fibrous capsule at the interface between the implant and the subcutaneous tissue with no signs of inflammation. Ultimately, controlling the PEGDA chain length shows potential for the development of self‐inflating tissue expanders with tunable mechanical and swelling properties.

  相似文献   


11.
Biomimetic hydrophobic polymer composites with water‐responsive mechanically adaptive behaviors were successfully prepared using hydrophilic chitosan‐treated clay (chi‐clay) as the water‐activated, pH‐sensitive and reinforcing phase and elastomeric thermoplastic polyurethane (TPU) as the matrix. Structural characterization, swelling tests in three representative solutions with different pH values, and dynamic mechanical analysis under wet and dry conditions were performed on the resultant chi‐clay‐TPU composites with varying chi‐clay contents. The results showed that the equilibrium swelling degree of TPU increased significantly with increasing chi‐clay content and that water transportation in all the composites followed Fickian diffusion mechanism. The presence of chi‐clay provided remarkable enhancement of the storage modulus of TPU and offered water‐responsive changes of the modulus. Such changes increased with chi‐clay content and were pH‐sensitive, with the acidic condition rendering the largest modulus difference. These water‐responsive polymer composites may find potential applications in biomedical fields and beyond. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 55–62  相似文献   

12.
13.
Recently, the application of nanostructured materials in the field of tissue engineering has garnered attention to mediate treatment and regeneration of bone defects. In this study, poly(l ‐lactic acid) (PLLA)/gelatin (PG) fibrous scaffolds are fabricated and β‐cyclodextrin (βCD) grafted nano‐hydroxyapatite (HAp) is coated onto the fibrous scaffold surface via an interaction between βCD and adamantane. Simvastatin (SIM), which is known to promote osteoblast viability and differentiation, is loaded into the remaining βCD. The specimen morphologies are characterized by scanning electron microscopy. The release profile of SIM from the drug loaded scaffold is also evaluated. In vitro proliferation and osteogenic differentiation of human adipose derived stem cells on SIM/HAp coated PG composite scaffolds is characterized by alkaline phosphatase (ALP) activity, mineralization (Alizarin Red S staining), and real time Polymerase chain reaction (PCR). The scaffolds are then implanted into rabbit calvarial defects and analyzed by microcomputed tomography for bone formation after four and eight weeks. These results demonstrate that SIM loaded PLLA/gelatin/HAp‐(βCD) scaffolds promote significantly higher ALP activity, mineralization, osteogenic gene expression, and bone regeneration than control scaffolds. This suggests the potential application of this material toward bone tissue engineering.

  相似文献   


14.
We have developed three‐dimensional electrospun microfibrous meshes of a novel star branched three‐arm poly(ε‐caprolactone) (*PCL) as potential scaffolds for tissue engineering applications. The processing conditions required to obtain uniform fibers were optimized by studying their influence on fiber morphology and size. Polymer molecular weight and solution feed rate influenced both the mesh microstructure and the tensile properties of the developed mats. Electrospun samples were also tested for their mechanical properties in wet conditions, showing higher yield strength and strain in comparison to that observed in dry conditions. Cell culture experiments employing MC3T3‐E1 osteoblast like cells showed good cell viability adhesion and collagen production on the *PCL scaffolds.

  相似文献   


15.
Recently, metal coordination has been widely utilized to fabricate high‐performance hydrogels, but conventional metal‐based hydrogels face some drawbacks, such as staining or acid lability. In the present study, a novel kind of colorless Zr(IV)‐crosslinked polyacrylamide/polyanionic cellulose (PAM/PAC) composite hydrogel with unique acid resistance was constructed via acrylamide polymerization in a PAC solution, followed by posttreatment in a zirconium oxychloride (ZrOCl2) solution. The prepared gels were characterized in terms of Fourier transform infrared spectroscopy, scanning electron microscopy, and tensile and compressive mechanics, as well as acid resistance. Inside the gels, the synergistic action of hydrogen bonding and Zr(IV) coordination is responsible for their improved mechanical properties and good energy dissipation ability. One hydrogel with nearly 90 wt % of water content can sustain approximately 5 MPa of compression stress at 90% strain without damage. Both microscopic network structures and macroscopic mechanics demonstrate facile adjustability via changing the PAC dosages in polymerization and/or ZrOCl2 concentrations in posttreatment. Moreover, the gels present unexpected acid resistance due to the strong Zr(IV) coordination with PAC, demonstrating their potential application as hydrogel electrolytes in supercapacitors. The current work provides a new approach to fabricate metal coordination‐based high strength, colorless hydrogels with acid resistance. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 981–991  相似文献   

16.
Hyperbranched polyurethanes are synthesized using TDI, PCL diol, butanediol, and pentaerythritol (1–5 wt%) as the B4 reactant with and without the monoglyceride of sunflower oil. The biodegradation, physico‐mechanical, and thermal properties are found to be tailored by varying the percentage weight of the branching unit. An MTT/hemolytic assay and subcutaneous implantation in Wistar rats followed by cytokine/ALP assay and histopathology studies confirm a better biocompatibility of HBPU with MG than without MG. HBPU supports the proliferation of dermatocytes with no toxic effect in major organs, in addition the in vitro degraded products are non‐toxic. Cell adherence and proliferation endorse the bio‐based HBPU as a prospective scaffold material in the niche of tissue engineering.

  相似文献   


17.
The chain‐extension behavior of 2,2′‐bis(2‐oxazoline) (BOZ) was studied to evaluate the coupling effect on polyamide‐6 (PA6) in a Haake Rheocord mixer and an extruder. The relative torque of PA6 dramatically increased within 1–2 min, and the results were similar whether the added amount of BOZ in PA6 was the theoretical amount or twice as much at 240 °C; however, after 5 min, the coupling results showed an optimal dosage of the chain extender, a lack of which caused a deficiency of chain extension and an excess of which led to a greater blocking reaction. The final torque was 2.16 times as much as that of a control sample when the reaction temperature was 240 °C, and the added amount of BOZ in PA6 was 1.156%; at the same time, the initial carboxyl content of the chain‐extended products decreased to 40% for PA6, and this corresponded to the intrinsic viscosity of PA6 increasing to 1.636 dL/g, whereas that of the control sample was 1.384 dL/g. Furthermore, the effects of BOZ on the thermal and mechanical properties of chain‐extended PA6 were investigated. The degree of crystallinity decreased as the chain extender was added to PA6. The Izod impact strength, tensile strength, and elongation at break of the resultant products dramatically improved under wet conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1976–1982, 2007  相似文献   

18.
Three‐dimensional hydrogel supports for mesenchymal and neural stem cells (NSCs) are promising materials for tissue engineering applications such as spinal cord repair. This study involves the preparation and characterization of superporous scaffolds based on a copolymer of 2‐hydroxyethyl and 2‐aminoethyl methacrylate (HEMA and AEMA) crosslinked with ethylene dimethacrylate. Ammonium oxalate is chosen as a suitable porogen because it consists of needle‐like crystals, allowing their parallel arrangement in the polymerization mold. The amino group of AEMA is used to immobilize RGDS and SIKVAVS peptide sequences with an N‐γ‐maleimidobutyryloxy succinimide ester linker. The amount of the peptide on the scaffold is determined using 125I radiolabeled SIKVAVS. Both RGDS‐ and SIKVAVS‐modified poly(2‐hydroxyethyl methacrylate) scaffolds serve as supports for culturing human mesenchymal stem cells (MSCs) and human fetal NSCs. The RGDS sequence is found to be better for MSC and NSC proliferation and growth than SIKVAVS.

  相似文献   


19.
Two novel trinuclear complexes [ZnCl(μ‐L)Ln(μ‐L)ClZn][ZnCl3(CH3OH)]?3 CH3OH (LnIII=Dy ( 1 ) and Er ( 2 )) have been prepared from the compartmental ligand N,N′‐dimethyl‐N,N′‐bis(2‐hydroxy‐3‐formyl‐5‐bromo‐benzyl)ethylenediamine (H2L). X‐ray studies reveal that LnIII ions are coordinated by two [ZnCl(L)]? units through the phenoxo and aldehyde groups, giving rise to a LnO8 coordination sphere with square‐antiprism geometry and strong easy‐axis anisotropy of the ground state. Ab initio CASSCF+RASSI calculations carried out on 1 confirm that the ground state is an almost pure MJ=±15/2 Kramers doublet with a marked axial anisotropy, the magnetic moment is roughly collinear with the shortest Dy?O distances. This orientation of the local magnetic moment of the DyIII ion in 1 is adopted to reduce the electronic repulsion between the oblate electron shape of the MJ=±15/2 Kramers doublet and the phenoxo‐oxygen donor atoms involved in the shortest Dy?O bonds. CASSCF+RASSI calculations also show that the ground and first excited states of the DyIII ion are separated by 129 cm?1. As expected for this large energy gap, compound 1 exhibits, in a zero direct‐current field, thermally activated slow relaxation of the magnetization with a large Ueff=140 K. The isostructural Zn–Er–Zn species does not present significant SMM behavior as expected for the prolate electron‐density distribution of the ErIII ion leading to an easy‐plane anisotropy of the ground doublet state.  相似文献   

20.
A novel antimicrobial nanohybrid based on near‐infrared (NIR) photothermal conversion is designed for bacteria capture, separation, and sterilization (killing). Positively charged magnetic reduced graphene oxide with modification by polyethylenimine (rGO–Fe3O4–PEI) is prepared and then loaded with core–shell–shell Au–Ag–Au nanorods to construct the nanohybrid rGO–Fe3O4–Au–Ag–Au. NIR laser irradiation melts the outer Au shell and exposes the inner Ag shell, which facilitates controlled release of the silver shell. The nanohybrids combine physical photothermal sterilization as a result of the outer Au shell with the antibacterial effect of the inner Ag shell. In addition, the nanohybrid exhibits high heat conductivity because of the rGO and rapid magnetic‐separation capability that is attributable to Fe3O4. The nanohybrid provides a significant improvement of bactericidal efficiency with respect to bare Au–Ag–Au nanorods and facilitates the isolation of bacteria from sample matrixes. A concentration of 25 μg mL?1 of nanohybrid causes 100 % capture and separation of Escherichia coli O157:H7 (1×108 cfu mL?1) from an aqueous medium in 10 min. In addition, it causes a 22 °C temperature rise for the surrounding solution under NIR irradiation (785 nm, 50 mW cm?2) for 10 min. With magnetic separation, 30 μg mL?1 of nanohybrid results in a 100 % killing rate for E. coli O157:H7 cells. The facile bacteria separation and photothermal sterilization is potentially feasible for environmental and/or clinical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号