首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Zhou Z  Zhang J  Zhang W  Bai Y  Liu H 《The Analyst》2011,136(12):2613-2618
Adulteration of herbal supplements with synthetic drugs is illegal. A rapid and reliable method which utilizes direct analysis in real time mass spectrometry (DART-MS) was developed for the identification of seven synthetic antidiabetic drugs used as adulterants in herbal dietary supplements. The supplement sample was simply extracted with methanol/water by manually shaking several times and directly analyzed using DART-MS. The presence of synthetic drug adulterants was confirmed through the accurate m/z values and MS/MS data obtained via quadruple time of flight mass spectrometry (QTOF MS). Parameters for the DART source were systematically optimized, and the limits of detection (LODs) in herbal supplement matrices were measured. This method was successfully applied to examine five commercial herbal dietary supplements, and two of them proved to be adulterated with metformin without labeling.  相似文献   

4.
Phenylketonuria (PKU) is commonly included in the newborn screening panel of most countries, with various techniques being used for quantification of l-phenylalanine (Phe). To diagnose PKU as early as possible in newborn screening, a rapid and simple method of analysis was developed. Using direct analysis in real time (DART) ionization coupled with triple-quadrupole tandem mass spectrometry (TQ-MS/MS) and with use of a 12 DIP-it tip scanner autosampler in positive ion mode, we analyzed dried blood spot (DBS) samples from PKU newborns. The concentration of Phe was determined using multiple reaction monitoring mode with the nondeuterated internal standard N,N-dimethylphenylalanine. The results of the analysis of DBS samples from newborns indicated that the DART-TQ-MS/MS method is fast, accurate, and reproducible. The results prove that this assay as a newborn screen for PKU can be performed in 18 s per sample for the quantification of Phe in DBS samples. DART-TQ-MS/MS analysis of the Phe concentration in DBS samples allowed us to screen newborns for PKU. This innovative protocol is rapid and can be effectively applied on a routine basis to analyze a large number of samples in PKU newborn screening and PKU patient monitoring.
Figure
The method can quantify the amount of phenylalanine in dried blood spot of newborn by using direct analysis in real time (DART) coupled with triple-quadrupole tandem mass spectrometry  相似文献   

5.
6.
7.
Direct Analysis in Real Time (DART) is an ambient ionization technique for mass spectrometry that provides rapid and sensitive analyses with little or no sample preparation. DART has been reported primarily for mass analyzers of low to moderate resolving power such as quadrupole ion traps and time‐of‐flight (TOF) mass spectrometers. In the current work, a custom‐built DART source has been successfully coupled to two different Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometers for the first time. Comparison of spectra of the isobaric compounds, diisopropyl methylphosphonate and theophylline, acquired by 4.7 T FT‐ICR MS and TOF MS, demonstrates that the TOF resolving power can be insufficient for compositionally complex samples. 9.4 T FT‐ICR MS yielded the highest mass resolving power yet reported with DART ionization for 1,2‐benzanthracene and 9,10‐diphenylanthracene. Polycyclic aromatic hydrocarbons exhibit a spatial dependence in ionization mechanisms between the DART source and the mass spectrometer. The feasibility of analyzing a variety of samples was established with the introduction and analysis of food products and crude oil samples. DART FT‐ICR MS provides complex sample analysis that is rapid, highly selective and information‐rich, but limited to relatively low‐mass analytes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
11.
This study presents a novel and rapid method to identify chemical markers for the quality control of Radix Aconiti Preparata, a world widely used traditional herbal medicine. In the method, the samples with a fast extraction procedure were analyzed using direct analysis in real time mass spectrometry (DART MS) combined with multivariate data analysis. At present, the quality assessment approach of Radix Aconiti Preparata was based on the two processing methods recorded in Chinese Pharmacopoeia for the purpose of reducing the toxicity of Radix Aconiti and ensuring its clinical therapeutic efficacy. In order to ensure the safety and effectivity in clinical use, the processing degree of Radix Aconiti should be well controlled and assessed. In the paper, hierarchical cluster analysis and principal component analysis were performed to evaluate the DART MS data of Radix Aconiti Preparata samples in different processing times. The results showed that the well processed Radix Aconiti Preparata, unqualified processed and the raw Radix Aconiti could be clustered reasonably corresponding to their constituents. The loading plot shows that the main chemical markers having the most influence on the discrimination amongst the qualified and unqualified samples were mainly some monoester diterpenoid aconitines and diester diterpenoid aconitines, i.e. benzoylmesaconine, hypaconitine, mesaconitine, neoline, benzoylhypaconine, benzoylaconine, fuziline, aconitine and 10-OH-mesaconitine. The established DART MS approach in combination with multivariate data analysis provides a very flexible and reliable method for quality assessment of toxic herbal medicine.  相似文献   

12.
13.
Under nitrogen‐depleted conditions, N2‐fixing cyanobacteria of the order Nostocales and Stigonematales differentiate vegetative cells into heterocysts. The cell envelope of these specialized cells contains unique glycolipids, consisting of a sugar moiety glycosidically bound to long‐chain diols, triols and hydroxyketones. Only few reports have been published on these glycolipids in cultured cyanobacteria and none has reported them in natural environments. Here we show that heterocyst glycolipids can be rapidly and sensitively analyzed using high‐performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC/ESI‐MS2). Positive ion mass spectra of the glycolipids consisted of protonated molecules and diagnostic product ions, indicating losses of sugar groups as well as hydroxyl and carbonyl functionalities from an alkyl chain. Using this method, heterocyst glycolipids were for the first time identified in a natural ecosystem, i.e., a microbial mat from the North Sea barrier island Schiermonnikoog, The Netherlands. This technique will facilitate the quick screening of cyanobacterial cultures and natural environments for the presence of heterocyst glycolipids, which may aid in assessing the role of heterocystous cyanobacteria in the global nitrogen cycle. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A novel method utilizing ambient thermal desorption ionization with a direct analysis in real‐time source integrated with mass spectrometry (DART‐MS) was established and applied to the rapid analysis of 3‐hydroxy‐3‐methylglutaric (3‐HMG) acid in the neonatal urine. Instrument parameter settings were optimized to obtain high sensitive and accurate determination of 3‐HMG acid. The use of helium gas heated to temperature of 400°C was observed to permit deprotonation, 3‐HMG acid producing an abundant (M‐H)? (m/z 161) in the negative ion mode. The calibration curve was determined to be linear over the range of 0.05‐5 mg/L, with the correlation coefficient r = 0.9988 and the relative standard deviations (n = 6) in the range of 1.5‐11.8%. The limit of detection was 0.002 mg/L, and the limit of quantitation was 0.007 mg/L. The recoveries ranged from 88.0% to 123.1%. Four urine samples from patients and four simulated urine samples were investigated. The results of DART‐MS were in agreement with the values determined using established methods at the hospitals. The proposed method demonstrated significant potential in the application of the high‐throughput screening in newborn screening.  相似文献   

15.
This new method overcomes problems of conventional analytical methodologies such as light scattering and sampling reproducibility issues. We used this method for mechanistic studies of catalytic reactions under heterogeneous conditions. Direct-type hydroxymethylation reactions and Mukaiyama-type hydroxymethylation reactions both catalyzed by a scandium–bipyridine ligand complex under micellar conditions were employed as examples of heterogeneous reactions. For direct-type hydroxymethylation reactions, initial reaction rate assays revealed first-order dependency on both substrate and catalyst. On the other hand, Mukaiyama-type hydroxymethylation reactions showed first-order rate dependency on substrate, zero-order on catalyst and saturation kinetics on formaldehyde.

A direct and quantitative method for monitoring heterogeneous organic reactions has been developed by using direct analysis in real time mass spectrometry (DART-MS) with an isotope-labeled reaction product as an internal standard.  相似文献   

16.
Triple quadrupole mass spectrometers coupled with high performance liquid chromatography are workhorses in quantitative bioanalyses. They provide substantial benefits including reproducibility, sensitivity and selectivity for trace analysis. Selected reaction monitoring allows targeted assay development but datasets generated contain very limited information. Data mining and analysis of nontargeted high‐resolution mass spectrometry profiles of biological samples offer the opportunity to perform more exhaustive assessments, including quantitative and qualitative analysis. The objectives of this study were to test method precision and accuracy, to statistically compare bupivacaine drug concentration in real study samples and to verify if high‐resolution and accurate mass data collected in scan mode can actually permit retrospective data analysis, more specifically, extract metabolite related information. The precision and accuracy data presented using both instruments provided equivalent results. Overall, the accuracy ranged from 106.2 to 113.2% and the precision observed was from 1.0 to 3.7%. Statistical comparisons using a linear regression between both methods revealed a coefficient of determination (R2) of 0.9996 and a slope of 1.02, demonstrating a very strong correlation between the two methods. Individual sample comparison showed differences from ?4.5 to 1.6%, well within the accepted analytical error. Moreover, post‐acquisition extracted ion chromatograms at m/z 233.1648 ± 5 ppm (M ? 56) and m/z 305.2224 ± 5 ppm (M + 16) revealed the presence of desbutyl‐bupivacaine and three distinct hydroxylated bupivacaine metabolites. Post‐acquisition analysis allowed us to produce semi‐quantitative evaluations of the concentration–time profiles for bupicavaine metabolites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号