首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compound poly[2‐hydroxy‐N‐methylethan‐1‐aminium [μ3‐cyanido‐κ3C:C:N‐di‐μ‐cyanido‐κ4C:N‐dicuprate(I)]], {(C3H10NO)[Cu2(CN)3]}n or [meoenH]Cu2(CN)3, crystallizes in the tetragonal space group P43. The structure consists of a three‐dimensional (3D) anionic CuICN network with noncoordinated protonated N‐methylethanolamine cations providing charge neutrality. Pairs of cuprophilic Cu atoms are bridged by the C atoms of μ3‐cyanide ligands, which link these units into a 43 spiral along the c axis. The spirals are linked together into a 3D anionic network by the two other cyanide groups. The cationic moieties are linked into their own 43 spiral via N—H…O and O—H…O hydrogen bonds, and the cations interact with the 3D network via an unusual pair of N—H…N hydrogen bonds to one of the μ2‐cyanide groups. Thermogravimetric analysis indicates an initial loss of the base cation and one cyanide as HCN at temperatures in the range 130–250 °C to form CuCN. We show how loss of a specific cyanide group from the 3D CuCN structure could form the linear CuCN structure. Further heating leaves a residue of elemental copper, isolated as the oxide.  相似文献   

2.
In the title three‐dimensional tetrazolate‐based coordination polymer, poly[bis(μ3‐cyanido‐κ3N:C:C)[μ5‐5‐(pyridin‐4‐yl)tetrazolato‐κ5N:N′:N′′:N′′′:N′′′′]tricopper(I)], [Cu3(C6H4N5)(CN)2]n, there are two types of coordinated CuI atoms. One type exhibits a tetrahedral environment and the other, residing on a twofold axis, adopts a trigonal coordination environment. The closest Cu...Cu distance is only 2.531 (2) Å, involving a bridging cyanide C atom. All four tetrazolate and the pyridine N atom of the 4‐(pyridin‐4‐yl)‐1H‐tetrazolate anion are coordinated to these CuI atoms and exhibit a μ5‐bridging mode. The three‐dimensional coordination network can be topologically simplified as a rarely observed (3,3,4,5)‐connected network with the Schläfli symbol (4.6.84)2.(42.6.87).(6.82)3.  相似文献   

3.
The title compound, catena‐poly[[bis[(triazacyclononane‐κ3N,N′,N′′)copper(II)]‐di‐μ‐cyanido‐κ4N:C‐palladate(II)‐di‐μ‐cyanido‐κ4C:N] dibromide bis[[(triazacyclononane‐κ3N,N′,N′′)copper(II)]‐μ‐cyanido‐κ2N:C‐[dicyanidopalladate(II)]‐μ‐cyanido‐κ2C:N] monohydrate], {[Cu2Pd(CN)4(C6H15N3)2]Br2·[Cu2Pd2(CN)8(C6H15N3)2]·H2O}n, (I), was isolated from an aqueous solution containing tacn·3HBr (tacn is 1,4,7‐triazacyclononane), Cu2+ and tetracyanidopalladate(2−) anions. The crystal structure of (I) is essentially ionic and built up of 2,2‐electroneutral chains, viz. [Cu(tacn)(NC)–Pd(CN)2–(CN)–], positively charged 2,4‐ribbons exhibiting the composition {[Cu(tacn)(NC)2–Pd(CN)2–Cu(tacn)]2n+}n, bromide anions and one disordered water molecule of crystallization. The O atom of the water molecule occupies two unique crystallographic positions, one on a centre of symmetry, which is half occupied, and the other in a general position with one‐quarter occupancy. One of the tacn ligands also exhibits disorder. The formation of two different types of one‐dimensional structural motif within the same structure is a unique feature of this compound.  相似文献   

4.
A one‐dimensional cyanide‐bridged coordination polymer, poly[[aquadi‐μ‐cyanido‐κ4C:N‐hexacyanido‐κ6C‐(dimethylformamide‐κO)bis(3,4,7,8‐tetramethyl‐1,10‐phenanthroline‐κ2N,N′)terbium(III)molybdate(V)] 4.5‐hydrate], [MoTb(CN)8(C16H16N2)2(C3H7NO)(H2O)]·4.5H2O}n, has been prepared and characterized through IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. The compound consists of one‐dimensional chains in which cationic [Tb(tmphen)2(DMF)(H2O)]3+ (tmphen is 3,4,7,8‐tetramethyl‐1,10‐phenanthroline) and anionic [MoV(CN)8]3− units are linked in an alternating fashion through bridging cyanide ligands. Neighbouring chains are connected by three types of hydrogen bonds (O—H...O, O—H...N and C—H...O) and by π–π interactions to form a three‐dimensional supramolecular structure. In addition, magnetic investigations show that ferromagnetic interactions exist in the compound.  相似文献   

5.
An organic–inorganic hybrid compound, catena‐poly[bis(3H‐imidazol‐1‐ium) [[tetracyanido‐κ4C‐cobalt(III)]‐μ‐cyanido‐κ2C:N‐[diaqualithium(I)]‐μ‐cyanido‐κ2N:C]], {(C3H5N2)2[CoLi(CN)6(H2O)2]}n, was synthesized by the reaction of Li3[Co(CN)6] with imidazolium chloride in aqueous solution. The compound crystallizes in the monoclinic space group C2/c (data collected at 273 K). In the crystal structure, neighbouring [Co(CN)6]3− anionic units are linked by Li+ cations through the cyanide groups in a trans mode, forming a one‐dimensional zigzag chain structure extending along the c axis. A three‐dimensional supramolecular network is formed through hydrogen‐bonding interactions and is further stabilized by weak CN...π interactions between the cyanide groups and the imidazolium cations.  相似文献   

6.
The crystal structures of three first‐row transition metal–pyridine–sulfate complexes, namely catena‐poly[[tetrakis(pyridine‐κN)nickel(II)]‐μ‐sulfato‐κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di‐μ‐sulfato‐κ4O:O‐bis[tris(pyridine‐κN)copper(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena‐poly[[tetrakis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′‐[bis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square‐pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octahedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetrahedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.  相似文献   

7.
A new cyanide‐bridged FeIII–MnII heterobimetallic coordination polymer (CP), namely catena‐poly[[[N,N′‐(1,2‐phenylene)bis(pyridine‐2‐carboxamidato)‐κ4N,N′,N′′,N′′′]iron(III)]‐μ‐cyanido‐κ2C:N‐[bis(4,4′‐bipyridine‐κN)bis(methanol‐κO)manganese(II)]‐μ‐cyanido‐κ2N:C], {[FeMn(C18H12N4O2)(CN)2(C10H8N2)2(CH3OH)2]ClO4}n, ( 1 ), was prepared by the self‐assembly of the trans‐dicyanidoiron(III)‐containing building block [Fe(bpb)(CN)2]? [bpb2? = N,N′‐(1,2‐phenylene)bis(pyridine‐2‐carboxamidate)], [Mn(ClO4)2]·6H2O and 4,4′‐bipyridine, and was structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction analysis shows that CP 1 possesses a cationic linear chain structure consisting of alternating cyanide‐bridged Fe–Mn units, with free perchlorate as the charge‐balancing anion, which can be further extended into a two‐dimensional supramolecular sheet structure via inter‐chain π–π interactions between the 4,4′‐bipyridine ligands. Within the chain, each MnII ion is six‐coordinated by an N6 unit and is involved in a slightly distorted octahedral coordination geometry. Investigation of the magnetic properties of 1 reveals an antiferromagnetic coupling between the cyanide‐bridged FeIII and MnII ions. A best fit of the magnetic susceptibility based on the one‐dimensional alternating chain model leads to the magnetic coupling constants J1 = ?1.35 and J2 = ?1.05 cm?1, and the antiferromagnetic coupling was further confirmed by spin Hamiltonian‐based density functional theoretical (DFT) calculations.  相似文献   

8.
Seven crystal structures of five first‐row (Fe, Co, Ni, Cu, and Zn) and one second‐row (Cd) transition metal–4‐picoline (pic)–sulfate complexes of the form [M(pic)x]SO4 are reported. These complexes are catena‐poly[[tetrakis(4‐methylpyridine‐κN)metal(II)]‐μ‐sulfato‐κ2O:O′], [M(SO4)(C6H7N)4]n, where the metal/M is iron, cobalt, nickel, and cadmium, di‐μ‐sulfato‐κ4O:O‐bis[tris(4‐methylpyridine‐κN)copper(II)], [Cu2(SO4)2(C6H7N)6], catena‐poly[[bis(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)2]n, and catena‐poly[[tris(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)3]n. The Fe, Co, Ni, and Cd compounds are isomorphous, displaying polymeric crystal structures with infinite chains of MII ions adopting an octahedral N4O2 coordination environment that involves four picoline ligands and two bridging sulfate anions. The Cu compound features a dimeric crystal structure, with the CuII ions possessing square‐pyramidal N3O2 coordination environments that contain three picoline ligands and two bridging sulfate anions. Zinc crystallizes in two forms, one exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a tetrahedral N2O2 coordination containing two picoline ligands and two bridging sulfate anions, and the other exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a trigonal bipyramidal N3O2 coordination containing three picoline ligands and two bridging sulfate anions. The structures are compared with the analogous pyridine complexes, and the observed coordination environments are examined in relation to crystal field theory.  相似文献   

9.
By using environmentally friendly K3[Co(CN)6] as a cyanide source, the solvothermal reaction of CuCl2 and tetrazole (Htta) led to a novel tetrazolate‐ and cyanide‐bridged three‐dimensional heterometallic CuII–CoIII complex, namely poly[[hexa‐μ2‐cyanido‐κ12C :N‐pentakis(μ3‐tetrazolato‐κ3N 1:N 2:N 4)cobalt(III)tetracopper(II)] monohydrate], {[CoIIICuII4(CHN4)5(CN)6]·H2O}n , (I). The crystal structure analysis reveals that it is the first example of a (6,8,8)‐connected three‐dimensional framework with a unique topology, constructed from anionic [Co(CN)6]3− and cationic [(Cu1)2(tta)2]2+ and [(Cu2Cu3)(tta)3]+ units through μ2‐cyanide and μ3‐tetrazolate linkers. The compound was further characterized by thermal analysis, vibrational spectroscopy (FT–IR), scanning electron microscopy/energy‐dispersive X‐ray spectroscopy (SEM–EDS) and magnetic measurements. The magnetic investigation indicates that the complex exhibits antiferromagnetic coupling between adjacent CuII cations.  相似文献   

10.
In the polymeric title compound, [CuI(C10H8N4)]n, the CuI atom is in a four‐coordinated tetrahedral geometry, formed by two I atoms and two pyridine N atoms from two different 4,4′‐(diazenediyl)dipyridine (4,4′‐azpy) ligands. Two μ2‐I atoms link two CuI atoms to form a planar rhomboid [Cu2I2] cluster located on an inversion centre, where the distance between two CuI atoms is 2.7781 (15) Å and the Cu—I bond lengths are 2.6290 (13) and 2.7495 (15) Å. The bridging 4,4′‐azpy ligands connect the [Cu2I2] clusters into a two‐dimensional (2‐D) double‐layered grid‐like network [parallel to the (10) plane], with a (4,4)‐connected topology. Two 2‐D grid‐like networks interweave each other by long 4,4′‐azpy bridging ligands to form a dense 2‐D double‐layered network. To the best of our knowledge, this interwoven 2‐D→2‐D network is observed for the first time in [Cu2I2]–organic compounds.  相似文献   

11.
The structures reported herein, viz. bis(4‐aminonaphthalene‐1‐sulfonato‐κO)bis(4,5‐diazafluoren‐9‐one‐κ2N,N′)copper(II), [Cu(C10H8NO3S)2(C11H6N2O)2], (I), and poly[[[diaquacadmium(II)]‐bis(μ‐4‐aminonaphthalene‐1‐sulfonato)‐κ2O:N2N:O] dihydrate], {[Cd(C10H8NO3S)2(H2O)2]·2H2O}n, (II), are rare examples of sulfonate‐containing complexes where the anion does not fulfill a passive charge‐balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the CuII atom, and the asymmetric unit contains one‐half of a Cu atom, one complete 4‐aminonaphthalene‐1‐sulfonate (ans) ligand and one 4,5‐diazafluoren‐9‐one (DAFO) ligand. The CuII atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one‐dimensional chains and solvent water molecules. Here also the cation (a CdII atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two CdII atoms into one‐dimensional infinite chains along the [010] direction, with each CdII center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant π–π stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two‐ and three‐dimensional networks.  相似文献   

12.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

13.
The novel polymeric complexes catena‐poly[[diaquamanganese(II)]‐μ‐2,2′‐bipyrimidine‐κ4N1,N1′:N3,N3′‐[diaquamanganese(II)]‐bis(μ‐terephthalato‐κ2O1:O4)], [Mn2(C8H4O4)2(C8H6N4)(H2O)4]n, (I), and catena‐poly[[[aquacopper(II)]‐μ‐aqua‐μ‐hydroxido‐μ‐terephthalato‐κ2O1:O1′‐copper(II)‐μ‐aqua‐μ‐hydroxido‐μ‐terephthalato‐κ2O1:O1′‐[aquacopper(II)]‐μ‐2,2′‐bipyrimidine‐κ4N1,N1′:N3,N3′] tetrahydrate], {[Cu3(C8H4O4)2(OH)2(C8H6N4)(H2O)4]·4H2O}n, (II), containing bridging 2,2′‐bipyrimidine (bpym) ligands coordinated as bis‐chelates, have been prepared via a ligand‐exchange reaction. In both cases, quite unusual coordination modes of the terephthalate (tpht2−) anions were found. In (I), two tpht2− anions acting as bis‐monodentate ligands bridge the MnII centres in a parallel fashion. In (II), the tpht2− anions act as endo‐bridges and connect two CuII centres in combination with additional aqua and hydroxide bridges. In this way, the binuclear [Mn2(tpht)2(bpym)(H2O)4] entity in (I) and the trinuclear [Cu3(tpht)2(OH)2(bpym)(H2O)4]·4H2O coordination entity in (II) build up one‐dimensional polymeric chains along the b axis. In (I), the MnII cation lies on a twofold axis, whereas the four central C atoms of the bpym ligand are located on a mirror plane. In (II), the central CuII cation is also on a special position (site symmetry ). In the crystal structures, the packing of the chains is further strengthened by a system of hydrogen bonds [in both (I) and (II)] and weak face‐to‐face π–π interactions [in (I)], forming three‐dimensional metal–organic frameworks. The MnII cation in (I) has a trigonally deformed octahedral geometry, whereas the CuII cations in (II) are in distorted octahedral environments. The CuII polyhedra are inclined relative to each other and share common edges.  相似文献   

14.
Treatment of copper(I) halides CuX (X = Cl, Br, I) with lithium 2‐(diphenylphosphanyl)anilide [Li(HL)] in THF led to the formation of hexanuclear copper(I) complexes [Cu6X2(HL)4] [X = Cl ( 1 ), Br ( 2 ), I ( 3 )]. In compounds 1 – 3 , the copper atoms are in a distorted octahedral arrangement and the amide ligands adopt a μ3‐κP,κ2N bridging mode. Additionally there are two μ2‐bridging halide ligands. Each of the [Cu6X2(HL)4] clusters comprises two copper atoms, which are surrounded by two amide nitrogen atoms in an almost linear coordination [Cu–N: 186.2(3)–188.0(3) pm] and four copper atoms, which are connected to an amide N atom, a P atom, and a halogen atom in a distorted trigonal planar fashion [Cu–N: 199.6(3)–202.3(3) pm)].  相似文献   

15.
Thiosemicarbazides and their metal complexes have attracted considerable interest because of their biological activities and their flexibility, which allows the ligands to bend and rotate freely to accommodate the coordination geometries of various metal centres. Discrete copper(II) and cadmium(II) complexes have been prepared by crystallization of N‐[2‐(2‐hydroxybenzoyl)hydrazinecarbonothioyl]propanamide (H3L) with Cu(CH3COO)2 or Cd(NO3)2 in a dimethylformamide/methanol mixed‐solvent system at room temperature, affording the complexes di‐μ‐acetato‐bis{μ4‐1‐[(2‐oxidophenyl)carbonyl]‐2‐(propanamidomethanethioyl)hydrazine‐1,2‐diido}tetracopper(II) dimethylformamide disolvate, [Cu4(C11H10N3O3S)2(C2H3O2)2]·2C3H7NO, (I), and bis{μ2‐[(2‐hydroxyphenyl)formamido](propanamidomethanethioyl)azanido}bis[(4,4′‐bipyridine)nitratocadmium(II)] dihydrate, [Cd2(C11H12N3O3S)2(NO3)2(C10H8N2)2]·2H2O, (II). Complex (I) consists of four CuII cations, two μ4‐bridging trianionic ligands and two μ2‐bridging acetate ligands, while complex (II) is composed of two CdII cations, two μ2‐bridging monoanionic ligands, two nitrate ligands and two 4,4′‐bipyridine ligands. These discrete complexes are connected by hydrogen bonds and van der Waals interactions to form a three‐dimensional supramolecular architecture. Compared with (I), the phenolic hydroxy group and hydrazide N atom of the thiosemicarbazide ligand of (II) are not involved in coordination and lead to a binuclear CdII complex. This different coordination mode may be attributed to the larger ionic radius of the CdII ion compared with the CuII ion.  相似文献   

16.
A new one‐dimensional platinum mixed‐valence complex with nonhalogen bridging ligands, namely catena‐poly[[[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(II)]‐μ‐thiocyanato‐κ2S:S‐[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(IV)]‐μ‐thiocyanato‐κ2S:S] tetrakis(perchlorate)], {[Pt2(SCN)2(C2H8N2)4](ClO4)4}n, has been isolated. The PtII and PtIV atoms are located on centres of inversion and are stacked alternately, linked by the S atoms of the thiocyanate ligands, forming an infinite one‐dimensional chain. The PtIV—S and PtII...S distances are 2.3933 (10) and 3.4705 (10) Å, respectively, and the PtIV—S...PtII angle is 171.97 (4)°. The introduction of nonhalogen atoms as bridging ligands in this complex extends the chemical modifications possible for controlling the amplitude of the charge‐density wave (CDW) state in one‐dimensional mixed‐valence complexes. The structure of a discrete PtIV thiocyanate compound, bis(ethane‐1,2‐diamine‐κ2N,N′)bis(thiocyanato‐κS)platinum(IV) bis(perchlorate) 1.5‐hydrate, [Pt(SCN)2(C4H8N2)2](ClO4)2·1.5H2O, has monoclinic (C2) symmetry. Two S‐bound thiocyanate ligands are located in trans positions, with an S—Pt—S angle of 177.56 (3)°.  相似文献   

17.
The title complex, catena‐poly[[[(2,2′‐bipyridine‐1κ2N,N′)tris(methanol‐2κO)(nitrato‐2κ2O,O′)‐μ‐cyanido‐1:2C:N‐cyanido‐1κC‐iron(II)neodymium(III)]‐di‐μ‐cyanido‐1:2′C:N;2:1′N:C] methanol solvate], {[FeIINdIII(CN)4(NO3)(C10H8N2)(CH3OH)3]·CH3OH}n, is made up of ladder‐like one‐dimensional chains oriented along the c axis. Each ladder consists of two strands based on alternating FeII and NdIII centers connected by cyanide bridges. Furthermore, two such parallel chains are connected by additional cyanide cross‐pieces (the `rungs' of the ladder), which likewise connect FeII and NdIII centers, such that each [Fe(CN)4(bipy)]2− unit (bipy is 2,2′‐bipyridine) coordinates with three NdIII centers and each NdIII center connects with three different [Fe(CN)4(bipy)]2− units. In the complex, the iron(II) cation is six‐coordinated with a distorted octahedral geometry and the neodymium(III) cation is eight‐coordinated with a distorted dodecahedral environment.  相似文献   

18.
The new bifunctional ligand 4,4′‐(adamantane‐1,3‐diyl)bis(1,2,4‐triazole) (tr2ad) and benzene‐1,3,5‐tricarboxylate sustain complementary coordination bridging for the three‐dimensional framework of poly[[bis[μ3‐4,4′‐(adamantane‐1,3‐diyl)bis(1,2,4‐triazole)‐κ3N1:N2:N1′]bis(μ4‐benzene‐1,3,5‐tricarboxylato‐κ4O1:O1′:O3:O5)di‐μ3‐hydroxido‐κ6O:O:O‐tetracopper(II)] dihydrate], {[Cu4(C9H3O6)2(OH)2(C14H18N6)2]·2H2O}n. The net node is a centrosymmetric (μ3‐OH)2Cu4 cluster [Cu—O = 1.9525 (14)–2.0770 (15) Å and Cu...Cu = 3.0536 (5) Å] involving two independent copper ions in tetragonal pyramidal CuO4N and trigonal bipyramidal CuO3N2 environments. One carboxylate group of the anion is bridging and the other two are monodentate, leading to the connection of three hydroxide clusters and the generation of neutral coordination layers separated by 9.3583 (5) Å. The interlayer linkage is effected by μ3‐tr2ad ligands, with one triazole group N1:N2‐bridging and the second monodentate [Cu—N = 1.9893 (19), 2.010 (2) and 2.411 (2) Å]. In total, the hydroxide clusters are linked to six close neighbors within the carboxylate layer and to four neighbors via tr2ad bridges. Hydrogen bonding of solvent water molecules to noncoordinated triazole N atoms and carboxylate groups provides two additional links for the net, which adopts a 12‐connected topology corresponding to hexagonal closest packing. The study also introduces a new type of bis(triazole) ligand, which may find wider applications for supramolecular synthesis.  相似文献   

19.
Square‐planar complexes are commonly formed by transition metal ions having a d8 electron configuration. Planar cyanometallate anions have been used extensively as design elements in supramolecular coordination systems. In particular, square‐planar tetracyanometallate(II) ions, i.e. [M(CN)4]2− (MII = Ni, Pd or Pt), are used as good building blocks for bimetallic Hofmann‐type assemblies and their analogues. Square‐planar tetracyanonickellate(II) complexes have been extensively developed with N‐donor groups as additional co‐ligands, but studies of these systems using O‐donor ligands are scarce. A new cyanide‐bridged CuII–NiII heterometallic compound, poly[[diaquatetra‐μ2‐cyanido‐κ8C:N‐nickel(II)copper(II)] monohydrate], {[CuIINiII(CN)4(H2O)2]·H2O}n, has been synthesized and characterized by X‐ray single‐crystal diffraction analyses, vibrational spectroscopy (FT–IR), thermal analysis, electron paramagnetic resonance (EPR) and magnetic moment measurements. The structural analysis revealed that it has a two‐dimensional grid‐like structure built up of cationic [Cu(H2O)2]2+ and anionic [Ni(CN)4]2− units connected through bridging cyanide ligands. The overall three‐dimensional supramolecular network is expanded by a combination of interlayer O—H…N and intralayer O—H…O hydrogen‐bond interactions. The first decomposition reactions take place at 335 K under a static air atmosphere, which illustrates the existence of guest water molecules in the interlayer spaces. The electron paramagnetic resonance (EPR) spectrum confirms that the CuII cation has an axial coordination symmetry and that the unpaired electrons occupy the d orbital. In addition, magnetic investigations showed that antiferromagnetic interactions exist in the CuII atoms through the diamagnetic [Ni(CN)4]2− ion.  相似文献   

20.
The lanthanum(III) complexes tris(3,5‐diphenylpyrazolato‐κ2N,N′)tris(tetrahydrofuran‐κO)lanthanum(III) tetrahydrofuran monosolvate, [La(C15H11N2)3(C4H8O)3]·C4H8O, (I), and tris(3,5‐diphenyl‐1,2,4‐triazolato‐κ2N1,N2)tris(tetrahydrofuran‐κO)lanthanum(III), [La(C14H10N3)3(C4H8O)3], (II), both contain LaIII atoms coordinated by three heterocyclic ligands and three tetrahydrofuran ligands, but their coordination geometries differ. Complex (I) has a mer‐distorted octahedral geometry, while complex (II) has a fac‐distorted configuration. The difference in the coordination geometries and the existence of asymmetric La—N bonding in the two complexes is associated with intramolecular C—H...N/O interactions between the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号