首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell‐free approaches to in situ tissue engineering require materials that are mechanically stable and are able to control cell‐adhesive behavior upon implantation. Here, the development of mechanically stable grafts with non‐cell adhesive properties via a mix‐and‐match approach using ureido‐pyrimidinone (UPy)‐modified supramolecular polymers is reported. Cell adhesion is prevented in vitro through mixing of end‐functionalized or chain‐extended UPy‐polycaprolactone (UPy‐PCL or CE‐UPy‐PCL, respectively) with end‐functionalized UPy‐poly(ethylene glycol) (UPy‐PEG) at a ratio of 90:10. Further characterization reveals intimate mixing behavior of UPy‐PCL with UPy‐PEG, but poor mechanical properties, whereas CE‐UPy‐PCL scaffolds are mechanically stable. As a proof‐of‐concept for the use of non‐cell adhesive supramolecular materials in vivo, electrospun vascular scaffolds are applied in an aortic interposition rat model, showing reduced cell infiltration in the presence of only 10% of UPy‐PEG. Together, these results provide the first steps toward advanced supramolecular biomaterials for in situ vascular tissue engineering with control over selective cell capturing.

  相似文献   


2.
Herein, a bilayer cylindrical conduit (P‐CA) is presented consisting of electrospun polycaprolactone (PCL) nanofibers and sodium alginate hydrogel covalently cross‐linked with N,N′‐disuccinimidyl carbonate (DSC). The bilayer P‐CA conduit is developed by combining the electrospinning and outer–inner layer methods. Using DSC, as a covalent crosslinker, increases the degradation time of the sodium alginate hydrogel up to 2 months. The swelling ratio of the hydrogel is also 503% during the first 8 h. The DSC cross‐linked sodium alginate in the inner layer of the conduit promotes the adhesion and proliferation of nerve cells, while the electrospun PCL nanofibers in the outer layer provide maximum tensile strength of the conduit during surgery. P‐CA conduit promotes the migration of Schwann cells along the axon in a rat model based on functional and histological evidences. In conclusion, P‐CA conduit will be a promising construct for repairing sciatic nerves in a rat model.  相似文献   

3.
In this study, a three layered poly (ε‐caprolactone) (PCL) graft (tPCL) was fabricated by electrospinning PCL and electrospraying poly (ethylene oxide) (PEO), which has a thin dense inner layer, a loose middle layer, and a dense outer layer. Regular PCL grafts (rPCL) with only a dense layer were used as control. In vivo evaluation was performed in rabbit carotid artery. Enhanced cell infiltration, rapid regeneration of endothelium and smooth muscle layers, and increased elastin deposition were observed within the tPCL graft wall. After 3 months, tPCL grafts showed faster PCL degradation than the rPCL grafts. Infiltrated macrophages in the tPCL grafts secreted higher level of monocyte chemoattractant protein‐1 (MCP‐1) and vascular endothelial growth factor (VEGF) which enhanced vascular regeneration. In conclusion, the tPCL graft may be a useful vascular prosthesis and worth for further investigation.

  相似文献   


4.
Biodegradable cell‐incorporated scaffolds can guide the regeneration process of bone defects such as physiological resorption, tooth loss, and trauma which medically, socially, and economically hurt patients. Here, 0, 5, 10, and 15 wt% fluoridated hydroxyapatite (FHA) nanoparticles containing 25 wt% F? and 75 wt% OH? were incorporated into poly(ε‐caprolactone) (PCL) matrix to produce PCL/FHA nanocomposite scaffolds using electrospinning method. Then, scanning electron microscopy (SEM), X‐ray diffraction (XRD) pattern, and Fourier transform infrared spectroscopy (FTIR) were used to evaluate the morphology, phase structure, and functional groups of prepared electrospun scaffolds, respectively. Furthermore, the tensile strength and elastic modulus of electrospun scaffolds were investigated using the tensile test. Moreover, the biodegradation behavior of electrospun PCL/FHA scaffolds was studied by the evaluation of weight loss of mats and the alternation of pH in phosphate buffer saline (PBS) up to 30 days of incubation. Then, the biocompatibility of prepared mats was investigated by culturing MG‐63 osteoblast cell line and performing MTT assay. In addition, the adhesion of osteoblast cells on prepared electrospun scaffolds was studied using their SEM images. Results revealed that the fiber diameter of prepared electrospun PCL/FHA scaffolds alters between 700 and 900 nm. The mechanical assay illustrated the mat with 10 wt% FHA nanoparticles revealed the highest tensile strength and elastic modulus. The weight loss alternation of mats determined around 1% to 8% after 30 days of incubation. The biocompatibility and cell adhesion of mats improved by increasing the amounts of FHA nanoparticles.  相似文献   

5.
合成的聚己内酯(PCL)经天然的卵磷脂(Phosphatidylcholine,PC)填充改性后,通过电纺丝技术加工得到三维多孔的纤维支架。卵磷脂含有的两性离子基团,可以显著改善PCL支架材料的亲水性,进而提高支架材料的细胞相容性。体外细胞增殖实验表明,骨髓间充质干细胞(MSCs)在含有5wt%卵磷脂的改性支架表面生长得最好。作为种子细胞的MSCs在流动培养下,通过力学刺激在管状支架内壁形成了多层细胞。通过对样品染色切片和荧光照片的观察,种子细胞MSCs与对照组的血管平滑肌细胞(SMCs)一样,有向改性支架内部生长的趋势。本文以这种PC填充改性PCL材料的纤维支架作为组织工程血管,对其进行了初步的探索。  相似文献   

6.
Hydrophilicity improvement and bioactive surface design of poly(?-caprolactone) (PCL) grafts are of key importance for their application in tissue engineering. Herein, we develop a convenient approach for achieving stable hydrophilic surfaces by modifying electrospun PCL grafts with a class II hydrophobin (HFBI) coating. Static water contact angles (WCA) demonstrated the conversion of the PCL grafts from hydrophobic to hydrophilic after the introduction of amphiphilic HFBI. ATR-FTIR and XPS confirmed the presence of self-assembled HFBI films on the surface of the PCL nanofibers. The biocompatibility of the HFBI-modified PCL grafts was evaluated by cell proliferation in vitro, and by arteriovenous shunt (AV shunt) experiments ex vivo. Anti-CD31 antibody, which is specific for endothelial cells (ECs), was subsequently immobilized on the HFBI-coated PCL scaffolds through protein-protein interactions. This bioactive PCL graft was found to promote the attachment and retention of endothelial cells. These results suggest that this stepwise strategy for introducing cell-specific binding molecules into PCL scaffolds may have potential for development of vascular grafts that can endothelialize rapidly in vivo.  相似文献   

7.
In clinical practice, the need for small‐diameter vascular grafts continues to increase. Decellularized xenografts are commonly used for vascular reconstructive procedures. Here, porcine coronary arteries are decellularized, which destroys the extracellular matrix structure, leading to the decrease of vascular strength and the increase of vascular permeability. A bilayer tissue‐engineered vascular graft (BTEV) is fabricated by electrospinning poly(l ‐lactide‐co‐carprolactone)/gelatin outside of the decellularized vessels and functionalized by immobilizing heparin, which increases the biomechanical strength and anticoagulant activity of decellularized vessels. The biosafety and efficacy of the heparin‐modified BTEVs (HBTEVs) are verified by implanting in rat models. HBTEVs remain patent and display no expansion or aneurism. After 4 weeks of implantation, a cell monolayer in the internal surface and a dense middle layer have formed, and the mechanical properties of regenerated vessels are similar to those of rat abdominal aorta. Therefore, HBTEVs can be used for rapid remodeling of small‐diameter blood vessels.  相似文献   

8.
Ambroxol is a pharmacological chaperone (PC) for Gaucher disease that increases lysosomal activity of misfolded β‐glucocerebrosidase (GCase) while displaying a safe toxicological profile. In this work, different poly(ε‐caprolactone) (PCL)‐based systems are developed to regulate the sustained release of small polar drugs in physiological environments. For this purpose, ambroxol is selected as test case since the encapsulation and release of PCs using polymeric scaffolds have not been explored yet. More specifically, ambroxol is successfully loaded in electrospun PCL microfibers, which are subsequently coated with additional PCL layers using dip‐coating or spin‐coating. The time needed to achieve 80% release of loaded ambroxol increases from ≈15 min for uncoated fibrous scaffolds to 3 days and 1 week for dip‐coated and spin‐coated systems, respectively. Furthermore, it is proven that the released drug maintains its bioactivity, protecting GCase against induced thermal denaturation.  相似文献   

9.
《先进技术聚合物》2018,29(1):442-450
Electrospun biodegradable fiber mesh is a promising alternative scaffold for delivering progenitor cells for repairing damaged or diseased tissue, but its cripple mechanical stability has not met the requirement of tissue engineering yet. In this work, the well‐defined poly(ε‐caprolactone)‐branched poly(methyl methacrylate‐co‐hydroxyethylmethacrylate) (PCL‐PMH) has been successfully synthesized to toughen electrospun poly(l ‐lactide) (PLLA) fiber membrane. Characterization of the obtained nanofibrous meshes indicates that PCL‐PMH and PLLA can be well blended to make smooth fibers, and fibrous diameter vary little with blending PCL‐PMH. The aggregation state of two macromolecules is closely correlated with blend ratio, molecular structure, and molecular weight of PCL‐PMH, and only when PCL‐PMH and PLLA form good interfacial adhesion can PMH give full play to its potential for toughening the fiber membrane. The tensile strength and elongation at break of the blend are 6.20 MPa and 63.40% under the optimal conditions, respectively, and it also exhibits the representative feature of toughness materials. The blending fiber membrane is as no cytotoxic as original PLLA. This work will provide a new way for toughness of electrospun fiber membrane in practice.  相似文献   

10.
Fibrous scaffolds, which can mimic the elastic and anisotropic mechanical properties of native tissues, hold great promise in recapitulating the native tissue microenvironment. We previously fabricated electrospun fibrous scaffolds made of hybrid synthetic elastomers (poly(1,3‐diamino‐2‐hydroxypropane‐co‐glycerol sebacate)‐co‐poly (ethylene glycol) (APS‐co‐PEG) and polycaprolactone (PCL)) to obtain uniaxial mechanical properties similar to those of human aortic valve leaflets. However, conventional electrospinning process often yields scaffolds with random alignment, which fails to recreate the anisotropic nature of most of the soft tissues such as native heart valves. Inspired by the structure of native valve leaflet, we designed a novel valve leaflet‐inspired ring‐shaped collector to modulate the electrospun fiber alignment and studied the effect of polymer formulation (PEG amount [mole %] in APS‐co‐PEG; ratio between APS‐co‐PEG and PCL; and total polymer concentration) in tuning the biaxial mechanical properties of the fibrous scaffolds. The fibrous scaffolds collected on the ring‐shaped collector displayed anisotropic biaxial mechanical properties, suggesting that their biaxial mechanical properties are closely associated with the fiber alignment in the scaffold. Additionally, the scaffold stiffness was easily tuned by changing the composition and concentration of the polymer blend. Human valvular interstitial cells (hVICs) cultured on these anisotropic scaffolds displayed aligned morphology as instructed by the fiber alignment. Overall, we generated a library of biologically relevant fibrous scaffolds with tunable mechanical properties, which will guide the cellular alignment.  相似文献   

11.
Electrospun biodegradable vascular grafts provide a wide range of design components from the selection of materials to the modification of fiber structure. In this study, both single layer and bilayer tubular scaffolds with inner diameter of 6 mm were electrospun from polycaprolactone with different molecular weights and poly(l ‐lactide) caprolactone polymers. Bilayer scaffolds were designed by using different combinations of the polymer types in each layer and obtaining fiber orientation in outer layers. Scaffolds were analyzed morphologically and mechanically. Obtained results of mechanical performance were discussed according to the used polymer‐type composition, fiber orientation, and composite effect of both layer in the final graft. Smooth muscle cells were seeded on the scaffolds to test biocompatibility of presented scaffolds. Results indicate that the use of different biodegradable polymers in different combinations in each layer causes notable differences in fiber morphology and mechanical performance of the scaffolds. Moreover, fiber orientation in outer layer improves tensile strength and burst pressures in radial directions while creating a suitable fibrous layer for smooth muscle cells by mimicking the extracellular matrix of tunica media in native vessels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
To improve the hydrophilic properties of poly(ε‐caprolactone) (PCL) nano/microfiber webs for tissue engineering scaffolds, PCL webs of various structures were fabricated by electrospinning with single or double nozzles connected to an auxiliary electrode. Surface‐modified and layered PCL fiber webs were made by including water‐soluble poly(ethylene oxide) (PEO) in the PCL electrospinning solution (single‐nozzle method) or by electrospinning of alternating PCL and PEO solutions using two nozzles (double‐nozzle method), respectively. When the PEO component within the resulting webs was removed by dissolution with distilled water, the remnant PCL webs exhibited two distinct structures. Those made by the single‐nozzle method consisted of nanofibers with high surface roughness, whereas those made by the double‐nozzle method consisted of stacked layers of PCL nanofibers. Both types of structured PCL web showed improved hydrophilicity characteristics compared with those of nanofiber webs generated from a pure PCL solution using a typical electrospinning process. Cell culturing and scanning electron microscopy showed that the interactions between human dermal fibroblasts and the structured PCL scaffolds were very favorable. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2038–2045, 2007  相似文献   

13.
Continuous polymer nanofibers are available through electrospinning, but most have the same structure in their cross section. This article focuses on the fabrication and the structural and mechanical characterization of pencil‐like double‐layered composite nanofibers coaxially electrospun from solutions of two different biodegradable materials, i.e., gelatin and poly(ε‐caprolactone) (PCL). Transmission electron microscopy and water contact angle measurements confirmed that a gelatin inner fiber was wrapped with a PCL outer layer. Possible applications of such nanofibers include a controlled degradation rate when used as a medical device in human body. It has been found that the tensile performance of the composite nanofibers was better than those of both the pure constituent, i.e. gelatin and PCL, nanofibers alone. The ultimate strength and ultimate strain of the composite nanofibers with 7.5% w/v gelatin in the core and 10% w/v PCL as shell were at least 68% and 244% higher, respectively, than those of the same concentration pure gelatin and PCL nanofibers. Thus, a coaxial electrospinning technique as used in this article can be applicable, not only in developing functionalized nanofibers but also in elevating their mechanical property. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2852–2861, 2005  相似文献   

14.
Biodegradable poly(ε‐caprolactone) (PCL) scaffolds with adipose‐derived mesenchymal stem cells (ADSCs) have been used in vascular regeneration studies. An evaluation method of the effect of PCL degradation products (DP) on the viability, stemness, and differentiation capacities of ADSCs is established. ADSCs are cultured in medium containing different concentrations of PCL DP before evaluating the effect of PCL DP on the cell apoptosis and proliferation, cell surface antigens, adipogenic and osteogenic differentiation capacities, and capacities to differentiate into endothelial cells and smooth muscle cells. The results demonstrate that PCL DP exceed 0.05 mg mL?1 may change the stemness and differentiation capacities of ADSCs. Therefore, to control the proper concentration of PCL DP is essential for ADSCs in vascular regeneration application.  相似文献   

15.
This study reports the structural transition of electrospun poly(ε‐caprolactone) (PCL)/poly[(propylmethacryl‐heptaisobutyl‐polyhedral oligomeric silsesquioxane)‐co‐(methyl meth­acrylate)] (POSS‐MMA) blends, from PCL‐rich fibers, to bicontinuous PCL core/POSS‐MMA shell fibers, to POSS‐MMA‐rich fibers with a discontinuous PCL inner phase. A ternary phase diagram depicting the electrospinnability of PCL/POSS‐MMA solutions is constructed by evaluating the morphological features of fibers electrospun from solutions with various concentrations and PCL/POSS‐MMA blend ratios. X‐ray diffraction, Raman spectroscopy, and differential scanning calorimetry are further used to characterize the electrospun PCL/POSS‐MMA hybrid fibers. These physicochemical characterization results are thoroughly discussed to understand the internal structures of the hybrid fibers, which are directly correlated to the phase separation behavior of the electrospun solutions. The current study provides further insight into the complex phase behavior of POSS‐copolymer‐based systems, which hold great potential for a broad spectrum of biomedical applications.

  相似文献   


16.
Bone‐derived extracellular matrix (ECM) is widely used in studies on bone regeneration because of its ability to provide a microenvironment of native bone tissue. However, a hydrogel, which is a main type of ECM application, is limited to use for bone graft substitutes due to relative lack of mechanical properties. The present study aims to fabricate a scaffold for guiding effective bone regeneration. A polycaprolactone (PCL)/beta‐tricalcium phosphate (β‐TCP)/bone decellularized extracellular matrix (dECM) scaffold capable of providing physical and physiological environment are fabricated using 3D printing technology and decoration method. PCL/β‐TCP/bone dECM scaffolds exhibit excellent cell seeding efficiency, proliferation, and early and late osteogenic differentiation capacity in vitro. In addition, outstanding results of bone regeneration are observed in PCL/β‐TCP/bone dECM scaffold group in the rabbit calvarial defect model in vivo. These results indicate that PCL/β‐TCP/bone dECM scaffolds have an outstanding potential as bone graft substitutes for effective bone regeneration.  相似文献   

17.
Structural simulation of the smooth muscle layer plays an important role in tissue engineering of blood vessels for the replacement of damaged arteries. However, it is difficult to construct small‐diameter tubular scaffolds to homogenously locate and align smooth muscle cells (SMCs). In this work, novel temperature responsive shape‐memory scaffolds are designed for SMC culturing. The scaffolds are composed of an outer layer of poly(lactide–glycolide–trimethylene carbonate) (PLGATMC) for programming the deformation from planar to small‐diameter tubular shape and an inner layer of aligned nanofibrous membrane of poly(lactide–glycolide)/chitosan (PLGA/CS) to regulate cell adhesion, proliferation, and morphology. The SMC behaviors and functions are dependent on the PLGA/CS ratios of membranes, and the scaffold with PLGA/CS 7:3 membrane exhibits the most suitable ability to regulate SMC behavior. The PLGA/CS@PLGATMC scaffold can be deformed into a temporary planar at 20 °C for convenient seeding and attachment of SMCs and then immediately self‐rolled into 3D tube at 37 °C. The proposed strategy offers a practical approach for the development of small‐diameter vascular scaffolds from 2D planar into 3D tubular shape by self‐rolling.  相似文献   

18.
A hybrid technology that combines a three‐dimensional (3‐D) dispensing system with an electrospinning process was used to produce a hierarchical 3‐D scaffold consisting of micro‐sized polycaprolactone (PCL) strands and micro/nano‐sized fibres. The micro/nanofibre biocomposites electrospun with PCL/small intestine submucosa (SIS) and PCL/Silk fibroin were layered between melt‐plotted micro‐strands. The scaffold containing SIS exhibited a stronger hydrophilic property than other scaffolds due to the various hydrophilic components in SIS. The 3‐D hierarchical scaffold having biocomposites exhibited an incredibly enhanced initial cell attachment and proliferation of bone marrow‐derived mesenchymal stem cells relative to the normally designed 3‐D scaffold.

  相似文献   


19.
With adjustable amphiphilicity and anionic/cationic charge, biodegradability and biocompatibility, amino acid-based poly(ester amide)s(PEAs) have drawn attention in the research of tissue engineered vascular grafts. In this work, L-phenylalanine-based PEAs with or without L-lysine were synthesized through polycondensation, and ultrafine fibrous grafts consisted of PEAs and poly(ε-caprolactone)(PCL) in given mass ratios were further prepared via blend electrospinning. Surface characterizations by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the chemical structure, and the wettability indicated that the prepared PCL/PEAs electrospun membranes exhibited less hydrophobic than PCL. Tensile results showed that the PCL/PEAs membranes possessed suitable mechanical properties, which could meet the requirements of artificial blood vessels. Cell culture and hemolytic tests exhibited that the PCL/PEAs electrospun membranes are biocompatible. In general, the electrospun grafts of PCL/PEAs could be applied for vascular repair.  相似文献   

20.
Inducing the formation of new blood vessels (angiogenesis) is an essential requirement for successful tissue engineering. Approaches have been proposed to enhance angiogenesis using growth factors and other biomolecules; however, this approaches present drawbacks in terms of high cost and patient safety. Copper is known to effectively regulate angiogenesis and can offer a more cost‐effective alternative than the direct use of growth factors. With this study, a strategy to incorporate copper in electrospun fibrous scaffolds with pro‐angiogenic properties is presented. Polycaprolactone (PCL) and copper(II)‐chitosan are electrospun using benign solvents. The morphological and physicochemical properties of the fiber mats are investigated through scanning electron microscopy (SEM), static contact angle measurements, energy dispersive X‐ray, and Fourier‐transform infrared spectroscopies. Scaffold stability in phosphate buffered saline at 37 °C is monitored over 1 week. A bone marrow stromal cell line (ST‐2) is cultured for 7 days and its behavior is evaluated using SEM, fluorescence microscopy and a tetrazolium salt‐based colorimetric assay. Results confirm that PCL/copper(II)‐chitosan is suitable for electrospinning. The fiber mats are biocompatible and favor cell colonization and infiltration. Most notably, the angiogenic potential of PCL/copper(II)‐chitosan blends is confirmed by a three‐fold increase in VEGF secretion by ST‐2 cells in the presence of copper(II)‐chitosan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号