首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Cypridina luciferin from the luminous ostracod Cypridina (Vargula) hilgendorfii has an imidazopyrazinone core structure (3,7-dihydroimidazopyrazin-3-one), which is identical to that of coelenterazine. Cypridina luciferyl sulfate (3-enol sulfate of Cypridina luciferin) was isolated for the first time and the chemical structure was identified by LC/ESI–TOF–MS analysis. Furthermore, Cypridina luciferyl sulfate was chemically synthesized, and its absorption and MS/MS spectra were in agreement with that of Cypridina luciferyl sulfate isolated. Using the crude extracts of Cypridina specimens, Cypridina luciferyl sulfate could be converted to Cypridina luciferin in the presence of adenosine 3′,5′-diphosphate (PAP), and Cypridina luciferin was converted to Cypridina luciferyl sulfate in the presence of 3′-phosphoadenosine 5′-phosphosulfate (PAPS). These results suggested that a sulfotransferase catalyzes the reversible sulfation of Cypridina luciferin in Cypridina hilgendorfii. In aqueous solution, Cypridina luciferyl sulfate was more stable than Cypridina luciferin and might be a storage form of Cypridina luciferin.  相似文献   

2.
Shin-ichi Kato  Makoto Ojika 《Tetrahedron》2004,60(50):11427-11434
In a luminous ostracod Cypridina (Vargula) hilgendorfii, Cypridina luciferin with an imidazopyrazinone structure (3,7-dihydroimidazopyrazin-3-one) is utilized for the luminescence reaction. To identify the biosynthetic units of Cypridina luciferin, the stable isotope labeled compounds were examined by feeding experiments with living Cypridina specimens. The incorporation of the labeled compounds into Cypridina luciferin was identified by the method of LC/ESI-TOF-MS analyses and these results suggested that l-tryptophan, l-arginine and l-isoleucine are structural units of Cypridina luciferin.  相似文献   

3.
Five new firefly luciferin ( 1 ) analogues were synthesized and their light emission properties were examined. Modifications of the thiazoline moiety in 1 were employed to produce analogues containing acyclic amino acid side chains ( 2 – 4 ) and heterocyclic rings derived from amino acids ( 5 and 6 ) linked to the benzothiazole moiety. Although methyl esters of all of the synthetic derivatives exhibited chemiluminescence activity, only carboluciferin ( 6 ), possessing a pyrroline‐substituted benzothiazole structure, had bioluminescence (BL) activity (λmax=547 nm). Results of bioluminescence studies with AMP‐carboluciferin (AMP=adenosine monophosphate) and AMP‐firefly luciferin showed that the nature of the thiazoline mimicking moiety affected the adenylation step of the luciferin–luciferase reaction required for production of potent BL. In addition, BL of 6 in living mice differed from that of 1 in that its luminescence decay rate was slower.  相似文献   

4.
The relative rates of bioluminescence, as well as chemiluminescence, among Cypridina luciferin analogs, and the relative light yield between bioluminescence and chemiluminescence of each of the analogs have been measured with reference to Cypridina luciferin.  相似文献   

5.
Cypridina luciferin is the substrate in the bioluminescence of a luminous ostracod Cypridina (Vargula) hilgendorfii. Cypridina luciferin contains a chiral center in the sec-butyl moiety. Here, we report a convenient method for the preparation of (S)-Cypridina luciferin by the condensation of (S)-1,1-diethoxy-3-methylpentan-2-one with ethioluciferin. The light yield of the synthesized (S)-luciferin in the presence of Cypridina luciferase was about 1.7 times as active as that of racemic form. Furthermore, several luciferin analogs prepared by the same condensation with different α-ketoacetal derivatives showed moderate light yield with Cypridina luciferase. These readily available Cypridina luciferin and analogs are applicable to the bioluminescent detection of Cypridina luciferase.  相似文献   

6.
Mechanisms in the quantum yield of Cypridina bioluminescence   总被引:4,自引:1,他引:4  
Abstract— –The influence of temperature, pH, salts, and reactant concentrations on the biolumin-escent oxidation of Cypridina luciferin catalyzed by Cypridina luciferase indicates a highest quantum yield φ (einsteins per mole of luciferin oxidized) of 0.31 in H2O, or 0.33 in 99% D2O. With the aid of data on fluorescence of the light-emitting oxyluciferin-luciferase complex, and of oxyluciferin in diglyme, partial explanations are suggested for the observed variations in φ, including the relatively low φ, of 0.03 for chemiluminescence of luciferin in organic solvents, wherein a different pathway of luciferin degradation, as indicated by chromatographic evidence, results in much less population of the excited state.  相似文献   

7.
Structure of Cypridina biluciferyl (luciferyl radical dimer), which is produced by chemical oxidation of C. luciferin with such as ferricyanide, was determined to be the symmetric 5,5′-dimer of C. luciferin. It gives light in the presence of C. luciferase, although the bioluminescent rate is very low. We suggest that the biluciferyl is an intermediate in the oxidation of the luciferin to C. luciferinol.  相似文献   

8.
Semiempirical calculations have been carried out on the interactions of [R2Sn(H2O)2]2+, [R = H(CH2)n: n = 1–8], mainly with five nucleotides, 5′‐adenosine monophosphate (5′‐AMP), but also with guanosine 5′‐monophosphate (5′‐GMP), cytidine 5′‐monophosphate (5′‐CMP), uridine‐5′‐monophosphate (5′‐UMP) and inosine 5′‐monophosphate (5′‐IMP). The preferred sites of interaction were calculated to be the ribose O2 and O3 hydroxyl oxygens and/or the phosphate oxygens, with the nitrogen sites in the bases the least attractive to the tin compounds. This is in general agreement with experimental findings. Structures of the 1:1 coordination complexes vary from distorted tetrahedral, to distorted trigonal pyramidal to distorted octahedral geometries. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A cost-efficient preparative enzymatic sulfation of oligosaccharides has been developed. Starting from adenosine 3′5′-diphosphate (PAP), the sulfate donating and highly expensive cofactor 3′-phosphoadenosine-5′-phosphosulfate (PAPS, 1 ) can be regenerated by using a recombinant aryl sulfotransferase and p-nitrophenyl sulfate. This system averts product inhibition by PAP and can serve as a continuous spectrophotometric assay for the activity of any sulfotransferase enzyme.  相似文献   

10.
The ring‐closing reaction of 5′‐adenosine monophosphate (5′‐AMP) to generate cyclic 3′, 5′‐adenosine monophosphate (cAMP) and H2O was theoretically investigated at the B3LYP/6‐31G**level. It was found that the ring‐closing reaction of 5′‐AMP may proceed in a synchronous way or in a stepwise way. For the latter, the reaction is a multichannel elimination reaction including inner H transfer. The potential energy surface of Path 3 is lowest in all the ring‐closing reaction paths. In addition, H shuttling reaction with the participation of a water molecule to act as a shuttle were also studied at the same level. The calculations indicate that the participation of a water molecule facilitates hydrogen transfer reaction. Our present calculations rationalized all the possible reaction channels. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

11.
Treatment of adenosine with PSCl3 in trimethyl phosphate gave, after ion‐exchange chromatography, adenosine‐5′‐O‐monophosphate (AMP; 28%) and adenosine‐5′‐O‐monothiophosphate (AMPS; 48%). AMPS was studied as a thiophosphate residue donor in an enzymatic transphosphorylation with nucleoside phosphotransferase (NPase) of the whole cells of Erwinia herbicola. As exemplified by a number of natural and sugar‐ and base‐modified nucleosides, it was demonstrated that NPase of the whole cells of Erwinia herbicola catalyzes the transfer of both thiophosphate and phosphate residues with a similar efficiency. An incubation of AMPS in a phosphorylating extract of Saccharomyces cerevisiae (K‐phosphate buffer (0.3 M , pH 7.0); 3% glucose; 15 mM MgCl2; 28°, 8 h), followed by ion‐exchange column chromatography afforded AMP (8%), AMPS (recovered, 23%), ATP (11%), and (SP)‐adenosine‐5′‐O‐(1‐thiotriphosphate) ((SP)‐ATPαS); (total yield 37%; 48% based on the consumed AMPS). For comparison of physicochemical properties, adenosine was chemically transformed into ATPαS as a mixture of the (SP) (53%) and (RP) (44%) diastereoisomers.  相似文献   

12.
《Analytical letters》2012,45(1):139-150
Abstract

A wireless remote‐query disposable magnetoelastic (ME) biosensor was developed for the assay of acid phosphatase (ACP). The sensor was fabricated by applying a magnetoelastic ribbon with a layer of pH‐sensitive polymer and upon it a sensing film containing bovine serum albumin (BSA) and adenosine‐5′‐monophosphate (5′‐AMP). The ACP‐catalyzed hydrolysis of 5′‐AMP decreases the solution pH, resulting in the polymer shrinking and consequently the resonance frequency of the magnetoelastic sensor increasing. The kinetic parameters were measured to be 1.64×10?3 M (Michaelis constant) and 130 Hz/min (maximum initial rate). The proposed sensor can determine 0.2 to 1.2 U/ml of ACP.  相似文献   

13.
The protonation constants of adenosine 5′‐monophosphate, guanosine 5′‐monophosphate, and inosine 5′‐monophosphate were determined in binary mixtures of H2O containing 0, 10, 15, 20, 25, 30, 35, 40, 45, and 50% MeOH, using a combination of potentiometric and spectrophotometric methods at a constant temperature (25°) and constant ionic strength (0.1 mol?dm?3 NaClO4). The protonation constants were analyzed using the normalized polarity parameter (E ), and Kamlet, Abboud, and Taft (KAT) parameters. A linear correlation of log K vs. the normalized polarity parameter was obtained. Dual‐parameter correlation of log K vs. π* (dipolarity/polarizability) and α (H‐bond‐donor acidity), as well as π* and β (H‐bond‐acceptor basicity) also gives good results in various aqueous organic solvent mixtures. Finally, the results are discussed in terms of the effect of solvent on the protonation equilibria.  相似文献   

14.
选取海萤类似物6-芳基-2-甲基咪唑[1,2-α]吡嗪-3(7H)酮环的C6位取代物(命名为MIPa~MIPd)进行理论研究. 采用密度泛涵理论B3LYP方法在气相和二甲亚砜(DMSO)及二甘醇二甲醚(DG)两种溶剂中, 对这些类似物在脱去二氧化碳反应过程中所涉及的2个反应路径的反应活化能和产物激发态的荧光寿命进行了计算, 结果表明, 取代吡嗪酮的过氧化四元环在DMSO溶剂中的反应活化能较低, 给电子基团作为取代基时反应更快. 在DMSO溶剂中, 路径Ⅱ的荧光量子效率比路径Ⅰ的高, 但在DG溶剂中, 路径Ⅰ的荧光效率高于路径Ⅱ的荧光效率.  相似文献   

15.
The chemiluminescence of 6-aryl-2-methylimidazo[1,2-a]pyrazin-3(7H)-ones (Cypridina luciferin analogues) in DMSO/1,1,3,3-tetramethylguanidine and in diglyme/acetate buffer was investigated. The results indicate that the reaction mechanism that produces a high chemiluminescence quantum yield involves a chemiexcitation process from a neutral dioxetanone intermediate possessing an electron-donating aryl group (σAr <−0.6) to the singlet-excited state of neutral acetamidopyrazine. This result may be applied to the reaction mechanism for Cypridina (Vargula) bioluminescence.  相似文献   

16.
Cypridina luciferase (Cluc), a secreted luminescent protein identified from Cypridina noctiluca , has two N ‐glycosylation sites. In this study, we evaluated the effects of N ‐glycosylation on Cluc properties by creating site‐directed mutagenic modifications at the consensus sequence for N ‐glycosylation (Asn‐X‐Ser/Thr). Eight variants consisting of four single‐ and double‐residue mutants each were characterized. The producibility and relative specific activity were apparently reduced in mutant Cluc although the thermostability and secretion efficiency were not affected. These results suggested that N ‐glycosylation modifications and the proper amino acid sequence of the N ‐glycan binding sites of Cluc are required for the complete protein folding to form a stable catalytic center, for the proper conformation of substrate–protein interaction residues, or for both and that defects in the glycosylation modification are not related to secretion process and stability of the protein.  相似文献   

17.
By the addition of hydrogen peroxide to human saliva, chemiluminescence from Cypridina luciferin analog (CCLA) and oxygen evolution were observed. Chemiluminescence was inhibited by inhibitors of salivary peroxidase, azide and cyanide and by a singlet oxygen quencher, crocin. Deuterium oxide (99.75%) stimulated the initial increase of CCLA by15–50% and the integrated CCLA 2.1-3.6-fold. The result suggest that the generation of singlet oxygen by peroxidase in human saliva depends on hydrogen peroxide.  相似文献   

18.
In this study, we have developed a method to assess adenosine 5?‐triphosphate by adsorptive extraction using surface adenosine 5′‐triphosphate‐imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5′‐triphosphate as a template, functional monomers (methacrylic acid, N‐isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non‐imprinted polymers were measured using high‐performance liquid chromatography with UV detection with a detection limit of 1.6 ± 0.02 µM of adenosine 5′‐triphosphate in the urine. High binding affinity (QMIP, 42.65 µmol/g), and high selectivity and specificity to adenosine 5′‐triphosphate compared to other competitive nucleotides including adenosine 5?‐diphosphate, adenosine 5?‐monophosphate, and analogs such as adenosine, adenine, uridine, uric acid, and creatinine were observed. The imprinting efficiency of imprinted polymer is 2.11 for urine (QMIP, 100.3 µmol/g) and 2.51 for synthetic urine (QMIP, 48.5 µmol/g). The extraction protocol was successfully applied to the direct extraction of adenosine 5′‐triphosphate from spiked human urine indicating that this synthesized molecularly imprinted polymer allowed adenosine 5′‐triphosphate to be preconcentrated while simultaneously interfering compounds were removed from the matrix. These submicron imprinted polymers over nano polystyrene spheres have a potential in the pharmaceutical industries and clinical analysis applications.  相似文献   

19.
Ultraweak light emission was detected upon injection of firefly luciferin into live Tenebrio larvae. A chemilumi-nescent enzymatic activity dependent on molecular oxygen, D-luciferin and MgATP was then isolated from larval fat body extracts by precipitation with 70% ammonium sulfate. D-Luciferin and ATP can be replaced by luciferyl-adenylate. Pyrophosphate is a main product from the chemiluminescent reaction. The in vitro chemiluminescence intensity was not affected by peroxidase inhibitors such as N3?- (0.5 mM) and CN? (1 mM), attesting to its nonperoxidatic nature but was strongly inhibited by AMP (1 mM), luciferin 6′-ethyl ether (1 mM) and sodium pyrophosphate (2 mM), well-known firefly lucifer-ase inhibitors. Some physical-chemical properties of this enzymatic activity were similar to those of firefly lucif-erase (KMATP = 195 μM; K0.5 luciferin - 0.8 mM; optimum pH 8.5; δmax= 610 nm at pH 8.5; firefly lucifer-ase: δmax= 565 nm at pH 8.0 and 619 mm at pH 6.0), but the chemiluminescence was not affected by addition of polyclonal antibodies raised against Photinus pyralis luciferase. These data suggest that this chemiluminescence results from a ligase with luciferase activity.  相似文献   

20.
选择体外筛选活性强的Bu2Sn(4-FC6H4C(O)NHO)2和活性弱的有机锡化合物Me2Sn(4-FC6H4C(O)NHO)2为模型,利用高分辨1H NMR和31P NMR 技术比较研究这两个有代表性的有机锡化合物与DNA的基本组成单元5’-AMP在不同时间、不同条件下的作用模式并用紫外法进一步研究其与DNA的相互作用。结果显示,具有不同碳链的有机锡化合物与5’-AMP相互作用明显不同,含较长碳链的Bu2Sn(4-FC6H4C(O)NHO)2与5’-AMP的作用明显强于Me2Sn(4-FC6H4C(O)NHO)2,Me2Sn(4-FC6H4C(O)NHO)2分子可能只与5’-AMP的磷酸骨架静电结合,与整个分子作用较弱,而含丁基的Bu2Sn(4-FC6H4C(O)NHO)2可能除了与磷酸骨架静电结合,也与疏水碱基具有超分子相互作用而更有利于与5’-AMP稳定结合。Bu2Sn(4-FC6H4C(O)NHO)2的长链有机配体在与DNA的作用模式上发挥了重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号