首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence detection is the most effective tool for tracking gene delivery in living cells. To reduce photodamage and autofluorescence and to increase deep penetration into cells, choosing appropriate fluorophores that are capable of two‐photon activation under irradiation in the NIR or IR regions is an effective approach. In this work, we have developed six tetranuclear ruthenium(II) complexes, GV1–6 , and have studied their one‐ and two‐photon luminescence properties. DNA interaction studies have demonstrated that GV2–6 , bearing hydrophobic alkyl ether chains, show more efficient DNA condensing ability but lower DNA binding constants than GV1 . However, the hydrophobic alkyl ether chains also enhance the DNA delivery ability of GV2–6 compared with that of GV1 . More importantly, we have applied GV1–6 as non‐viral gene vectors for tracking DNA delivery in living cells by one‐ and two‐photon fluorescence microscopies. In two‐photon microscopy, a high signal‐to‐noise contrast was achieved by irradiation with an 830 nm laser. This is the first example of the use of transition‐metal complexes for two‐photon luminescent tracking of the cellular pathways of gene delivery and as DNA carriers. Our work provides new insights into improving real‐time tracking during gene delivery and transfection as well as important information for the design of multifunctional non‐viral vectors.  相似文献   

2.
Investigation of DNA interactions with cationic lipids is of particular importance for the fabrication of biosensors and nanodevices. Furthermore, lipid/DNA complexes can be applied for direct delivery of DNA‐based biopharmaceuticals to damaged cells as non‐viral vectors. To obtain more effective and safer DNA vectors, the new cationic lipids 2‐tetradecylhexadecanoic acid‐{2‐[(2‐aminoethyl)amino]ethyl}amide (C I ) and 2‐tetradecylhexadecanoic acid‐2‐[bis(2‐aminoethyl)amino]ethylamide (C II ) were synthesized and characterized. The synthesis, physical–chemical properties and first transfection and toxicity experiments are reported. Special attention was focused on the capability of C I and C II to complex DNA at low and high subphase pH values. Langmuir monolayers at the air/water interface represent a well‐defined model system to study the lipid/DNA complexes. Interactions and ordering of DNA under Langmuir monolayers of the new cationic lipids were studied using film balance measurements, grazing incidence X‐ray diffraction (GIXD) and X‐ray reflectivity (XR). The results obtained demonstrate the ability of these cationic lipids to couple with DNA at low as well as at high pH value. Moreover, the observed DNA structuring seems not to depend on subphase pH conditions. An influence of the chemical structure of the lipid head group on the DNA binding ability was clearly observed. Both compounds show good transfection efficacy and low toxicity in the in vitro experiments indicating that lipids with such structures are promising candidates for successful gene delivery systems.  相似文献   

3.
Polyethylenimines (PEIs) are outstanding macromolecules belonging to the polycations used in gene transfection. The transfection efficiency and cytotoxicity of PEIs increase with the increase in their molecular weight. To break up the correlation between transfection efficiency and cytotoxicity for non‐viral gene delivery, disulfide cross‐linked polyethylenimine (PEI‐SS) has been widely employed as highly efficient gene vectors for DNA/siRNA delivery in numerous efforts. In this work, PEI‐SS is described as a non‐viral vector for miRNA delivery for the first time. PEI‐SS is synthesized via cross‐linking using disulfide bonds as the cross‐linker from low molecular weight PEI. PEI‐SS can efficiently bind anti‐miR‐155 to form the polyplex with nano‐sized spherical structures in the size range of 10–100 nm. The polyplex is degraded by glutathione (GSH, a reducing agent) in cancer cells. Anti‐miR‐155 is then released to efficiently inhibit tumor growth.  相似文献   

4.
Metal Complexes with Biological Important Ligands. CXLII. Half Sandwich Complexes of Ruthenium(II), Rhodium(III), and Iridium(III) with Tripeptide Esters from α‐, β‐, and γ‐Amino Acids as Ligands. — Peptide Synthesis and Cyclization to Cyclotripeptides at Metal Centers Halfsandwich complexes of ruthenium, rhodium and iridium with deprotonated N, N', N"‐tripeptide ester ligands were obtained from chloro bridged compounds and tripeptide methyl esters ( 1—6 ) or by peptide synthesis at a metal centre ( 9—15 ). For the peptide synthesis at the complex (C6Me6)Ru coordinated dipeptide methyl esters from glycine and β‐alanine or γ‐amino butyric acid were elongated by an a‐amino acid methylester. The tripeptide ester Ru(η6‐C6Me6) complexes with chiral amino acid components and an “asymmetric” metal atom are formed with high diastereoselectivity. The tripeptide esters Gly‐Gly‐β‐AlaOMe, Val‐Gly‐β‐AlaOMe and Phe‐Gly‐β‐AlaOMe can be condensated at the (C6Me6)Ru complex with sodium methanolate to give triple deprotonated cyclic tripeptides.  相似文献   

5.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

6.
A new and efficient cyclization reaction has been developed to synthesize cyclic α,α‐disubstituted β‐amino esters via iron‐catalyzed intramolecular aminomethyloxygenative cyclization of diazo compounds with N,O‐aminal under mild reaction conditions. A broad range of hydroxy‐α‐diazoesters with different substituents and various N,O‐aminals were compatible with this protocol, affording the corresponding α,α‐disubstituted β‐amino esters bearing a five‐ to eight‐membered oxacycle in good yields.  相似文献   

7.
Dextran‐formamidine esters (dextran‐N‐[(dimethylamino)methylene]‐β‐alanine ester) with different degrees of substitution (0.45–0.92) are synthesized in an one‐pot reaction. Dextran (Mw 60 000 g mol?1) is allowed to react with unprotected beta‐alanine and iminium chloride and investigated regarding the potential as gene delivery system for the transfer of plasmid DNA. With degrees of substitution ≥ 0.63 improved DNA binding with formation of enzymatically stable complexes of about 130–160 nm with negative surface charges are obtained. These physicochemical characteristics correlated with increasing transfection rates in CHO‐K1 cells determined by a luciferase reporter gene assay in dependency of the number of formamidine residues, N/P ratios and amount of DNA. The role of the number of formamidine groups is also highlighted by in vitro cyto‐ and hemotoxicity tests under the chosen conditions. These results indicate that dextran‐formamidine esters are a very promising material for the safe and efficient gene delivery.  相似文献   

8.
《中国化学》2018,36(2):153-156
A series of structurally novel P‐chiral biaryl bisphosphorus ligands L1‐L5 (BABIBOPs) are developed, providing high efficiency for the first time in palladium‐catalyzed asymmetric hydrogenation of β‐aryl and β‐alkyl substituted β‐keto esters. With the Pd‐ L3 (iPr‐BABIBOP) catalyst, a series of chiral β‐hydroxyl carboxylic esters are formed in excellent enantioselectivities (up to>99% ee) and yields at catalyst loading as low as 0.01 mol%.  相似文献   

9.
Summary: The multilayers of polycation‐based non‐viral DNA nanoparticles and biodegradable poly(L ‐glutamic acid) (PGA) were constructed by a layer‐by‐layer (LbL) technique. Poly(ethyleneimine) (PEI) was used to condense DNA to develop non‐viral DNA nanoparticles. AFM, UV‐visible spectrometry, and TEM measurements revealed that the PEI‐DNA nanoparticles were successfully incorporated into the multilayers. The well‐structured, easily processed multilayers with the non‐viral DNA nanoparticles may provide a novel approach to precisely control the delivery of DNA, which may have great potential for gene therapy applications in tissue engineering, medical implants, etc.

A TEM image of the cross section of a (PGA/PEI‐DNA nanoparticle)20 multilayer.  相似文献   


10.
The title compounds were synthesized by the microwave‐assisted, mostly solvent‐free bis Kabachnik–Fields condensation of β‐alanine and γ‐aminobutyric acid or their esters with formaldehyde and >P(O)H species, such as dialkyl phosphites and diphenylphosphine oxide.  相似文献   

11.
Rhodium–phosphite catalysts were found to effectively mediate double‐bond migrations within unsaturated esters. Once the double‐bond is in conjugation with the carboxylate group, they also catalyze the Michael addition of carbon and nitrogen nucleophiles. In the presence of these catalysts, unsaturated carboxylates enter a dynamic equilibrium of positional and geometrical double‐bond isomers. The conjugated species are continuously removed through 1,4‐additions with formation of β‐amino esters or β‐arylated products, depending on the nucleophile employed. The applicability of both protocols to a range of substrates, such as fatty esters of different chain lengths and double‐bond positions, and several nucleophiles including arylborates and primary and secondary amines, is demonstrated.  相似文献   

12.
郑志侠屈锋  林金明 《中国化学》2003,21(11):1478-1484
Chiral separation of dausyl amino acids by capillary electrophoresis using mixed selectors of Mn(ll)-L-alanine complex and β-cyclodextrin (β-CD) was studied. Resolution was considerably superior to that obtained by using either Mn (Ⅱ)-L-alanine complex or β-CD alone. The effects of separation parameters, such as pH value of buffer solution, capillary temperature, the concentration of Mn (Ⅱ)-L-alanine complex, the types of CD and ligand on the migration times and resolutions were investigated. Six different transition metal complexes,Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and Cd(Ⅱ)-L-alanine complexes have been employed and compared with Mn(Ⅱ)complex. Differences in retention and selectivity were found.The substitution of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) for Mn(Ⅱ) resulted in a better chiral resolution while Hg(Ⅱ) and Cd(Ⅱ) showed poorer resolution abilities. The chiral separation mechanism was also discussed briefly.  相似文献   

13.
Modification of the Lipid A phosphates by positively charged appendages is a part of the survival strategy of numerous opportunistic Gram‐negative bacteria. The phosphate groups of the cystic fibrosis adapted Burkholderia Lipid A are abundantly esterified by 4‐amino‐4‐deoxy‐β‐L ‐arabinose (β‐L ‐Ara4N), which imposes resistance to antibiotic treatment and contributes to bacterial virulence. To establish structural features accounting for the unique pro‐inflammatory activity of Burkholderia LPS we have synthesised Lipid A substituted by β‐L ‐Ara4N at the anomeric phosphate and its Ara4N‐free counterpart. The double glycosyl phosphodiester was assembled by triazolyl‐tris‐(pyrrolidinyl)phosphonium‐assisted coupling of the β‐L ‐Ara4N H‐phosphonate to α‐lactol of β(1→6) diglucosamine, pentaacylated with (R)‐(3)‐acyloxyacyl‐ and Alloc‐protected (R)‐(3)‐hydroxyacyl residues. The intermediate 1,1′‐glycosyl‐H‐phosphonate diester was oxidised in anhydrous conditions to provide, after total deprotection, β‐L ‐Ara4N‐substituted Burkholderia Lipid A. The β‐L ‐Ara4N modification significantly enhanced the pro‐inflammatory innate immune signaling of otherwise non‐endotoxic Burkholderia Lipid A.  相似文献   

14.
During the last 75 years, crystal structures have been reported for 19 of the 20 directly encoded proteinogenic amino acids in their natural (enantiomerically pure) form. The crystal structure is now reported for the final member of this set: L ‐lysine. As crystalline L ‐lysine has a strong propensity to incorporate water under ambient atmospheric conditions to form a hydrate phase, the pure (non‐hydrate) crystalline phase can be obtained only by dehydration under rigorously anhydrous conditions, resulting in a microcrystalline powder sample. For this reason, modern powder X‐ray diffraction methods have been exploited to determine the crystal structure in this final, elusive case.  相似文献   

15.
The direct Friedel–Crafts‐type coupling and dedinitrogenation reactions of vinyldiazo compounds with aromatic compounds using a metal‐free strategy are described. This Brønsted acid catalyzed method is efficient for the formation of α‐diazo β‐carbocations (vinyldiazonium ions), vinyl carbocations, and allylic or homoallylic carbocation species via vinyldiazo compounds. By choosing suitable nucleophilic reagents to selectively capture these intermediates, both trisubstituted α,β‐unsaturated esters, β‐indole‐substituted diazo esters, and dienes are obtained with good to high yields and selectivity. Experimental insights implicate a reaction mechanism involving the selective protonation of vinyldiazo compounds and the subsequent release of dinitrogen to form vinyl cations that undergo intramolecular 1,3‐ and 1,4‐ hydride transfer processes as well as fragmentation.  相似文献   

16.
Metal Complexes of Biologically Important Ligands. CLXV N,O‐Chelate Complexes of α‐Amino Acid Anions with Cyclopalladated N,N‐Dimethylferrocenecarbothioamide A short literature review on the reactions of various chlorobridged complexes with α‐aminoacidates, α‐amino acid esters, peptide ester or derivatives of amino acids is given. The chloro bridged o‐palladated N,N‐dimethylferrocenecarbothioamide [(fct)Pd(μ‐Cl)2Pd(fct)] reacts with the anions of glycine, L‐alanine, L‐proline, L‐valine, L‐phenylalanine, L‐leucine, L‐isoleucine to give the N,O‐chelates [(fct)Pd(N,O‐α‐aminocarboxylate)] ( 1 – 7 ). Due to the planary chirality of the unsymmetrically disubstituted cyclopentadienyl iron moiety of fct the complexes 2 – 7 with optically active amino acidate ligands are formed as a mixture of two diastereoisomers, which can be detected by their NMR spectra.  相似文献   

17.
Chiral cyclopentyl β‐amino esters are formed catalytically by [3+2] cycloaddition reactions of enecarbamates with electrophilic metalloenolcarbenes in high yield with up to 98 % ee and excellent diastereocontrol. Use of β‐silyl‐substituted enoldiazoacetates with a chiral dirhodium catalyst and trans‐β‐arylvinylcarbamates are optimal for this transformation, which occurs with hydrogen‐bond association between the vinylcarbamate and the intermediate metalloenolcarbene. Reductive conversion of the protected amino esters forms highly functionalized cyclopentyl β‐amino acids and 3‐aminocyclopentanones.  相似文献   

18.
The synthesis and characterization of two new capped silica mesoporous nanoparticles for controlled delivery purposes are described. Capped hybrid systems consist of MCM‐41 nanoparticles functionalized on the outer surface with polymer ε‐poly‐L ‐lysine by two different anchoring strategies. In both cases, nanoparticles were loaded with model dye molecule [Ru(bipy)3]2+. An anchoring strategy involved the random formation of urea bonds by the treatment of propyl isocyanate‐functionalized MCM‐41 nanoparticles with the lysine amino groups located on the ε‐poly‐L ‐lysine backbone (solid Ru‐rLys‐S1 ). The second strategy involved a specific attachment through the carboxyl terminus of the polypeptide with azidopropyl‐functionalized MCM‐41 nanoparticles (solid Ru‐tLys‐S1 ). Once synthesized, both nanoparticles showed a nearly zero cargo release in water due to the coverage of the nanoparticle surface by polymer ε‐poly‐L ‐lysine. In contrast, a remarkable payload delivery was observed in the presence of proteases due to the hydrolysis of the polymer’s amide bonds. Once chemically characterized, studies of the viability and the lysosomal enzyme‐controlled release of the dye in intracellular media were carried out. Finally, the possibility of using these materials as drug‐delivery systems was tested by preparing the corresponding ε‐poly‐L ‐lysine capped mesoporous silica nanoparticles loaded with cytotoxic drug camptothecin (CPT), CPT‐rLys‐S1 and CPT‐tLys‐S1 . Cellular uptake and cell‐death induction were studied. The efficiency of both nanoparticles as new potential platforms for cancer treatment was demonstrated.  相似文献   

19.
New oxygen‐rich compounds starting from the amino acids β‐alanine and L ‐aspartic acid were synthesized and comprehensively analyzed including multinuclear NMR spectroscopy and vibrational spectroscopy. Thermal stabilities were measured and the behavior towards external stimuli like friction or impact were determined. Detonation and combustion parameters were predicted by using the EXPLO5 V6.02 code and were compared with common explosives. In addition, crystal structures were obtained for two compounds.  相似文献   

20.
Multicomponent reactions are a very powerful tool for the construction of complex organic molecules by using readily available starting materials. While most of the multicomponent reactions discovered so far consist of three components, the reactions with four or more components remain sparse. We have successfully developed several four‐component reactions using a catalytic amount of water as a hydrolyzing agent to decompose byproduct chlorotrimethylsilane (TMSCl) to yield secondary byproduct HCl that serves as a catalyst. In the presence of 40 mol % of water, the four‐component reaction of aldehydes with hexamethyldisilazane (HMDS), chloroformates, and silylated nucleophiles proceeds smoothly at room temperature to give a range of protected primary amines in moderate to excellent yields. Importantly, a wide variety of protic carbon nucleophiles, such as β‐keto esters, β‐diketones, and ketones, have further been explored as suitable substrates for the synthesis of protected β‐amino esters and β‐amino ketones that are useful building blocks for various pharmaceuticals and natural products. These four‐component reactions proceed through a pathway of tandem nitrogen protection/imine formation/imine addition, and the decomposition of byproduct TMSCl, generated in the first step of nitrogen protection, with water results in the formation of secondary byproduct HCl, a strong Brønsted acid that catalyzes the following imine formation/imine addition. Taking advantage of the fact that alcohols or phenols are also able to decompose byproduct TMSCl to yield secondary byproduct HCl, no catalyst is needed at all for the four‐component reactions with aldehydes bearing hydroxy groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号