首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet B (UVB) irradiation is one of the most dangerous insults for skin and causes sunburn, erythema, photoaging and photocarcinogenesis. Curcumin (diferuloylmethane), a yellow spice derived from dried rhizomes of Curcuma longa, has been shown to possess significant anti‐inflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant and anti‐infective effects. However, the protective effects of curcumin against acute photo‐damage are poorly understood. In this study, we investigated the photoprotective effects of curcumin against UVB‐induced acute photo‐damage in hairless mice and immortalized human keratinocytes (HaCaT). Topical application of curcumin significantly inhibited acute UVB (540 mJ cm?2, for 3 successive days)‐induced inflammatory cells, collagen accrementition derangement and lipid peroxidation, and effectively induced NF‐E2‐related factor 2 (Nrf2) nuclear accumulation in uncovered (Uncv) hairless mice skin. Treatment of HaCaT cells with curcumin significantly attenuated acute UVB (300 mJ cm?2)‐induced lactate dehydrogenase release, intracellular reactive oxygen species production and DNA damage, activated the expression of the phase II detoxifying enzymes and promoted DNA repair activity. The photoprotective effect provided by curcumin was potential associated with modulation of Nrf2‐dependent antioxidant response. Our study suggested that curcumin is a potential agent for preventing and/or treating UV radiation‐induced acute inflammation and photoaging.  相似文献   

2.
Skin photoaging, which is mainly induced by ultraviolet B (UVB) radiation, is prevented by the application of UV‐protective agents. The microalga Nannochloropsis oceanica (N. oceanica) has been primarily reported as a potential biofuel; however, in this study, we investigated whether N. oceanica extracts exerted photoprotective effects against UVB‐irradiated human dermal fibroblasts (HDFs) and which single component was responsible for the protective effect of the extracts. Two extracts—pigment and nonpigment—were prepared from N. oceanica biomass. WST‐1 assay and expression analysis of interleukin genes showed that the pigment extracts were not significantly cytotoxic to HDFs. Further experiments revealed that treatment with the pigment extract upregulated the expression of collagen genes and significantly blocked UVB‐induced damage such as decreased cell viability and increased ROS production. Next, to investigate the pigment composition of the extracts, HPLC analysis was conducted and violaxanthin was identified as the major pigment. The UVB photoprotective effect of the pigment extracts was confirmed in violaxanthin‐treated HDFs. In addition, violaxanthin significantly attenuated UVB‐induced G1 phase arrest, senescence‐associated β‐galactosidase activation, p16 and p21 upregulation, ERK phosphorylation and the downregulation of ECM molecules in HDFs. Therefore, we concluded that violaxanthin was a potential antiphotoaging agent.  相似文献   

3.
Melanoma incidences are increasing rapidly, and ultraviolet (UV) radiation from the sun is believed to be its major contributing factor. UV exposure causes DNA damage in skin which may initiate cutaneous skin cancers including melanoma. Melanoma arises from melanocytes, the melanin‐producing skin cells, following genetic dysregulations resulting into hyperproliferative phenotype and neoplastic transformation. Both UVA and UVB exposures to the skin are believed to trigger melanocytic hyperplasia and melanomagenesis. Melanocytes by themselves are deficient in repair of oxidative DNA damage and UV‐induced photoproducts. Nicotinamide, an active form of vitamin B3 and a critical component of the human body's defense system has been shown to prevent certain cancers including nonmelanoma skin cancers. However, the mechanism of nicotinamide's protective effects is not well understood. Here, we investigated potential protective effects and mechanism of nicotinamide against UVA‐ and/or UVB‐ induced damage in normal human epidermal melanocytes. Our data demonstrated an appreciable protective effect of nicotinamide against UVA‐ and/or UVB‐ induced DNA damage in melanocytes by decreasing both cyclobutane pyrimidine dimers and 8‐hydroxy‐2′‐deoxyguanosine levels. We found that the photoprotective response of nicotinamide was associated with the activation of nucleotide excision repair genes and NRF2 signaling. Further studies are needed to validate our findings in in vivo models.  相似文献   

4.
Schinus terebinthifolius is a plant rich in phenolic compounds, which have antioxidant properties and can provide new opportunities for treatment and prevention of diseases mediated by ultraviolet radiation like photoaging and skin cancer. The aim of this study was to evaluate the photoprotective potential and ex vivo percutaneous penetration of the crude extract of Schinus terebinthifolius leaves. The extract was tested for antioxidant activity using the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) method and β‐carotene bleaching test. The sun protection factor was also evaluated. The ex vivo skin permeation of the emulsion and gel formulations were assayed. Fractionation of the extract resulted in gallic acid, ethyl gallate and a mixture of flavonoids, suggesting derivatives of quercetin and myricetin. The phenolic content of the extract was 384.64 ± 2.60 mg GAE g?1 extract. The antioxidant activity was superior to butylated hydroxytoluene, in DPPH method, and ascorbic acid and rutin, in β‐carotene bleaching assay. The extract showed UV absorption with photoprotector potential in the UVB region. The photoacoustic spectroscopy measurements confirmed absorption in the UV region and topical application of the formulations caused no histological changes in the rats' skin. These results suggest that the crude extract of Schinus terebinthifolius leaves may be a promising natural sunscreen product.  相似文献   

5.
A series of half‐sandwich iridium complexes ( 1 – 4 ) with thiosemicarbazone ligands in two types of coordination modes were synthesized and characterized. The molecular structures of compounds 1 , 2 and 3 were determined using single‐crystal X‐ray diffraction analysis. The nature of the complexes was studied using density functional theory calculations. The stability of the complexes was investigated using UV–visible absorption spectroscopy. The compounds were further evaluated for their in vitro antiproliferative activities against HeLa, HepG2, CNE‐2, SGC‐7901, KB and HEK‐293 T cell lines. Compound 2 displays the highest antiproliferative activity among the other analogues and cisplatin.  相似文献   

6.
The single-cell gel/comet assay is an electrophoretic technique used to detect single-strand breaks in DNA. Damage is assessed examining individual cells under an epifluorescent microscope. UV-induced DNA damage consists mostly of the formation of pyrimidine dimers; therefore, most of the damage cannot be detected using a standard comet assay. The enzyme T4 endonuclease V breaks DNA strands at sites of pyrimidine dimers. The main objective of this work is to evaluate the comet assay to detect UV-induced damage in DNA after an initial treatment of cells with T4 endonuclease V. This work was conducted on Rhodomonas sp. (Cryptophyta), a marine unicellular flagellate. Cells of Rhodomonas sp. were exposed to 12 h visible + ultraviolet-A + ultraviolet-B (VIS + UVA + UVB) and VIS (control), with and without T4 endonuclease V. Cells exposed to VIS + UVA + UVB showed approximately 200% more damage than control if these were treated with T4 endonuclease V. Rhodomonas sp. were exposed to 3, 6, 9 and 12 h of VIS, VIS + UVA and VIS + UVA + UVB. Damage induced by VIS + UVA + UVB as detected by the comet assay increased along with exposure time. However, damage caused by VIS and VIS + UVA remained relatively constant at all times. Results of this study indicate that the comet assay is more sensitive to UV radiation damage when used in conjunction with T4 endonuclease V. This modification of the comet assay can be used as an alternative technique to detect DNA damage in single cells caused by UV radiation.  相似文献   

7.
Mammalian skin is vulnerable to the photocarcinogenic and photoaging effects of solar UV radiation and defends itself using a variety of photoprotective responses including epidermal thickening, tanning and the induction of repair and antiradical systems. We treated Skh-1 albino hairless mice for 60 days with ultraviolet-A (UVA) or ultraviolet-B (UVB) radiation and measured the frequency of cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone photoproducts induced by a single acute sunburn dose of UVB at different stages of the chronic treatment. We found that both UVA and UVB exposure produced a photoprotective response in the dermis and epidermis and that the degree of photoproduct attenuation was dependent on dose, wavelength and the type of damage induced. Although epidermal thickening was important, our data suggest that UV protective compounds other than melanin may be involved in mitigating the damaging effects of sunlight in the skin.  相似文献   

8.
In past decades, researches on radiation‐induced bystander effect mainly focused on ionizing radiation such as α‐particle, β‐particle, X‐ray and γ‐ray. But few researches have been conducted on the ability of ultraviolet (UV) radiation‐induced bystander effect, and knowledge of UVC‐induced bystander effect is far limited. Here, we adopted medium transfer experiment to detect whether UVC could cause bystander effect in Chinese hamster V79 cells. We determined the cell viability, apoptosis rate, chromosome aberration and ultrastructure changes, respectively. Our results showed that: (1) the viability of UVC‐irradiated V79 cells declined significantly with the dosage of UVC; (2) similar to the irradiated cells, the main death type of bystander cells cultured in irradiation conditioned medium (ICMs) was also apoptosis; (3) soluble factors secreted by UVC‐irradiated cells could induce bystander effect in V79 cells; (4) cells treated with 4 h ICM collected from 90 mJ cm?2 UVC‐irradiated cells displayed the strongest response. Our data revealed that UVC could cause bystander effect through the medium soluble factors excreted from irradiated cells and this bystander effect was a novel quantitative and kinetic response. These findings might provide a foundation to further explore the exact soluble bystander factors and detailed mechanism underlying UVC‐induced bystander effect.  相似文献   

9.
The in vivo assessment of sunscreen protection does not include the photogenotoxicity of UVA or UVB solar radiation. Using the comet assay we have developed a simple and rapid technique to quantify sunscreen efficacy against DNA damage induced by UV light. Cutaneous human melanocytes from primary cultures were embedded in low-melting point (LPM) agarose and exposed to UVA (0.8 J/cm2) or to UVB (0.06 J/cm2) through a quartz slide covered with 10 microL volumes of sunscreens. DNA single-strand breaks induced directly by UVA at 4 degrees C and indirectly through nucleotide excision repair by UVB following a 35 min incubation period at 37 degrees C were quantified using the comet assay. Tail moments (TM) (tail length x %tail DNA) of 100 cells/sample were determined by image analysis. DNA damage was evaluated with a nonlinear regression analysis on the normalized distribution frequencies of TM using a chi 2 function. The coefficients of genomic protection (CGP) were defined as the percentage of inhibition of DNA lesions caused by the sunscreens. Twenty-one sunscreens were evaluated, and the calculated CGP were compared with the in vivo sun protective factor (SPF) and with the protection factor UVA (PFA). Nonlinear relationships were found between SPF and CGPUVB and between PFA and CGPUVA.  相似文献   

10.
Solar ultraviolet (UV) radiation, particularly its UVB (280–320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB‐mediated responses in human epidermal keratinocytes and in a three‐dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm?2)‐mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB‐mediated (1) poly(ADP‐ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB‐induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV‐induced skin damage.  相似文献   

11.
12.
Natural UV photoprotection plays a vital role in physiological protection. It has been reported that UVC radiation can make resveratrol (RSV) and piceatannol (PIC) accumulate in grape skin. In this work, we demonstrated that RSV and PIC could significantly absorb UVA and UVB, and confirmed their satisfactory photostability. Furthermore, we clarified the UV photoprotection mechanism of typical stilbenoids of RSV and PIC for the first time by using combined femtosecond transient absorption (FTA) spectroscopy and time‐dependent density functional theory (TD‐DFT) calculations. RSV and PIC can be photoexcited to the excited state after UVA and UVB absorption. Subsequently, the photoisomerized RSV and PIC quickly relax to the ground state via nonadiabatic transition from the S1 state at a conical intersection (CI) position between potential energy surfaces (PESs) of S1 and S0 states. This ultrafast transcis photoisomerization will take place within a few tens of picoseconds. As a result, the UV energy absorbed by RSV and PIC could be dissipated by an ultrafast nonadiabatic photoisomerization process.  相似文献   

13.
Abstract— Ultraviolet-light screening potential of Norway spruce (Picea abies [L.] Karst.) needles was investigated by UV-spectroscopic, microscopic, fluorescence spectroscopic techniques as well as by HPLC, mass spectrometry and NMR spectroscopy. Results showed four potential barriers of UV screening by Norway spruce needles: (1) UV-light screening via reflectance of UV/violet light by epidermis, (2) UV-light screening via reduction of transmission of UV light by special anatomical arrangement of the epidermal cells containing the UV-screening allomelanins as well as by the light-reflecting hyaline hypodermal cells, (3) conversion of UV light by epidermis into photosynthetically active radiation (PAR; blue and red spectral bands) via fluorescence and (4) UV-light screening by absorption of UV light by UV-screening substances contained in the epidermis, whereby the latter was found to be the most important UV-screening mechanism. Staining of needle cross sections with Naturstoffreagenz A showed the localization of bound flavonoids and its derivatives in the cell walls of the outer epidermal cell layer as revealed by confocal laser scanning microscopy. By fluorescence spectroscopy and confocal laser scanning microscopy, the conversion of UVA light into PAR in the epidermis was related to various UV-screening substances contained in the epidermis. The methanol-soluble UV-absorbing substances were found to create novel UV-screening barrier zones: UVC, >200–253 nm; UVC/UVB, >253–300/303 nm; and UVB/UVA, >300–362/368 nm in epidermis as well as in mesophyll (±vascular bundles) tissues, suggesting the protective functions of epidermis for the underlying mesophyll as well as of mesophyll for the underlying vascular bundles. The following sequence of efficiency of UV-screening barrier zones of the methanol-soluble extracts of the needle epidermis and mesophyll (± vascular bundles) for various UV-spectral bands was detected: UVC screening at less than 265 nm > UVC screening at 265–280 nm > UVB screening at 280–320 nm > UVA screening at 280–320 nm, whereby the UV screening at 280–320 nm was suggested as the most relevant barrier against enhanced UVB radiation. A blend of various UV-screening substances occurred in the methanol-soluble fractions of needle epidermis, whereby p-hydroxybenzoic acid 4-O-β-D-glucopyranoside, picein, (+)-catechin, p-hydroxyacetophenone, benzoic acid and astragalin were identified as UVC/UVB-screening substances; picein, (+)-catechin, astringin, p-hydroxyacetophenone and astragalin(s) as UVB-screening substances and astragalin(s) as UVA/B-screening substances. Alkaline hydrolysis of methanol-insoluble epidermal cell wall fractions released p-coumaric acid, ferulic acid and as-tragalin(s) as major UVB-screening substances. Loss of vitality of Norway spruce trees (forest decline disease) led to a significant reduction of UVB (315 nm)-screening ability of methanol-soluble fractions from epidermis, mesophyll (±vascular bundles) and whole needles. The HPLC analysis showed that the loss of vitality is due to a reduction in accumulation of UVB-absorbing substances, mainly picein, (+)-catechin, isorhapontin and astragalin(s) in the epidermis of needles from the second needle year in accordance with the detected loss of UVB-screening ability. It is concluded that the natural UV-screening mechanisms of Norway spruce needles are highly complex but mainly actively mediated by the ability of methanol-soluble UV-absorbing substances to form variable UVB-AJVA-screening barrier zones and passively by the ability of epidermal cell wall-bound UV-screening substances to screen UV light, whereby in the epidermis a conversion of excess UV light into PAR takes place.  相似文献   

14.
The formation of cyclobutane pyrimidine dimers (CPD) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) was investigated in Chinese hamster ovary cells upon exposure to either UVC, UVB, UVA or simulated sunlight (SSL). Two cell lines were used, namely AT3-2 and UVL9, the latter being deficient in nucleotide excision repair and consequently UV sensitive. For all types of radiation, including UVA, CPD were found to be the predominant lesions quantitatively. At the biologically relevant doses used, UVC, UVB and SSL irradiation yielded 8-oxodGuo at a rather low level, whereas UVA radiation produced relatively higher amounts. The formation of CPD was 10(2) and 10(5) more effective upon UVC than UVB and UVA exposure. These yields of formation followed DNA absorption, even in the UVA range. The calculated relative spectral effectiveness in the production of the two lesions showed that efficient induction of 8-oxodGuo upon UVA irradiation was shifted toward longer wavelengths, in comparison with those for CPD formation, in agreement with a photosensitization mechanism. In addition, after exposure to SSL, about 19% and 20% of 8-oxodGuo were produced between 290-320 nm and 320-340 nm, respectively, whereas CPD were essentially (90%) induced in the UVB region. However, the ratio of CPD to 8-oxodGuo greatly differed from one source of light to the other: it was over 100 for UVB but only a few units for UVA source. The extent of 8-oxodGuo and CPD was also compared to the lethality for the different types of radiation. The involvement of 8-oxodGuo in cell killing by solar UV radiation was clearly ruled out. In addition, our previously reported mutation spectra demonstrated that the contribution of 8-oxodGuo in the overall solar UV mutagenic process is very minor.  相似文献   

15.
In the quest for new natural agents of photoprotection, we evaluated the photoprotective and antioxidant activity of B. antioquensis leaf extracts as well as its phenolic composition. The methanolic extract treated with activated carbon showed the highest absorption coefficients for UVA‐UVB radiation, as well as an antioxidant capacity comparable to butylated hydroxy toluene. Furthermore, the formulation containing this extract showed suitable sensorial and photostable characteristics for topical use, and significant values of UVAPF, critical wavelength (λc), UVA/UVB ratio and sun protection factor (5.3, 378 nm, 0.78 and 9.1 ± 0.1, respectively). In addition, three glycoside derivatives of quercetin, a kaempferol glycoside and a derivative of caffeic acid were the main polyphenolic compounds identified. These results demonstrate the potential of B. antioquensis extracts to be used as active components of novel, natural sunscreens.  相似文献   

16.
Ultraviolet (UV) irradiation is an increasingly used method of water disinfection. UV rays can be classified by wavelength into UVA (320–400 nm), UVB (280‐320 nm), and UVC (<280 nm). We previously developed UVA sterilization equipment with a UVA light‐emitting diode (LED). The aim of this study was to establish a new water disinfection procedure using the combined irradiation of the UVA‐LED and another UV wavelength. An oxidative DNA product, 8‐hydroxy‐2’‐deoxyguanosine (8‐OHdG), increased after irradiation by UVA‐LED alone, and the level of cyclobutane pyrimidine dimers (CPDs) was increased by UVC alone in Vibrio parahaemolyticus. Although sequential irradiation of UVA‐LED and UVC‐induced additional bactericidal effects, simultaneous irradiation with UVA‐LED and UVC‐induced bactericidal synergistic effects. The 8‐OHdG and CPDs production showed no differences between sequential and simultaneous irradiation. Interestingly, the recovery of CPDs was delayed by simultaneous irradiation. The synergistic effect was absent in SOS response‐deficient mutants, such as the recA and lexA strains. Because recA‐ and lexA‐mediated SOS responses have crucial roles in a DNA repair pathway, the synergistic bactericidal effect produced by the simultaneous irradiation could depend on the suppression of the CPDs repair. The simultaneous irradiation of UVA‐LED and UVC is a candidate new procedure for effective water disinfection.  相似文献   

17.
The effect of different ultraviolet radiation (UVR) treatments combining PAR (P), UVA (A) and UVB (B) on the molecular physiology of Dunaliella tertiolecta was studied during 6 days to assess the response to chronic UVR exposure. UVR reduced cell growth but did not cause cell death, as shown by the absence of SYTOX Green labeling and cellular morphology. However, caspase‐like enzymatic activities (CLs), (regarded as cell death proteases), were active even though the cells were not dying. Maximal quantum yield of fluorescence (Fv/Fm) and photosynthetic electron transport rate (ETR) dropped. Decreased nonphotochemical quenching (NPQ) paralleled a drop in xanthophyll cycle de‐epoxidation under UVB. Reactive oxygen species (ROS) and D1 protein accumulation were inversely correlated. PAB exhibited elevated ROS production at earlier times. Once ROS decayed, D1 protein recovered two‐fold compared with P and PA at later stages. Therefore, PsbA gene was still transcribed, suggesting ROS involvement in D1 recovery by its direct effect on mRNA‐translation. We add evidence of an UVB‐induced positive effect on the cells when P is present, providing photoprotection and resilience, by means of D1 repair. This allowed cells to survive. The photoprotective mechanisms described here (which are counterintuitive in principle) conform to an important ecophysiological response regarding light stress acclimation.  相似文献   

18.
We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-KB by oxidant stress generated via the UVA (320–380nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-KB that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-KB in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-KB appeared to be correlated with membrane damage, and activation could be prevented by a-tocopherol and butylated hydroxytol-uene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-KB by the DNA damaging agents UVC (200–290nm) and UVB (290–320nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-KB over all wavelength ranges examined.  相似文献   

19.
This study compared biological responses of normal human fibroblasts (NHF1) to three sources of ultraviolet radiation (UVR), emitting UVC wavelengths, UVB wavelengths, or a combination of UVA and UVB (solar simulator; emission spectrum, 94.3% UVA and 5.7% UVB). The endpoints measured were cytotoxicity, intra‐S checkpoint activation, inhibition of DNA replication and mutagenicity. Results show that the magnitude of each response to the indicated radiation sources was best predicted by the density of DNA cyclobutane pyrimidine dimers (CPD). The density of 6‐4 pyrimidine–pyrimidone photoproducts was highest in DNA from UVC‐irradiated cells (14% of CPD) as compared to those exposed to UVB (11%) or UVA–UVB (7%). The solar simulator source, under the experimental conditions described here, did not induce the formation of 8‐oxo‐7,8‐dihydroguanine in NHF1 above background levels. Taken together, these results suggest that CPD play a dominant role in DNA damage responses and highlight the importance of using endogenous biomarkers to compare and report biological effects induced by different sources of UVR.  相似文献   

20.
SENSITIVITY OF MONONUCLEAR CELLS TO UV RADIATION   总被引:2,自引:0,他引:2  
Abstract—The viability of peripheral blood mononuclear cells, as measured by trypan blue dye exclusion, is decreased by exposure to UV radiation in vitro . The toxicity of the UV radiation is doseand wavelength-dependent; UVC is approximately 10 times more effective than UVB and 105 times more effective than UVA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号