首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Semiconductor photocatalysis is considered one of the most promising technologies for water purification from toxic organic dyes. However, to reliably evaluate the possibility of using a given material as a photocatalyst, it is crucial to investigate not only the photocatalytic activity but also its affinity towards various dyes and reusability. In this work, we studied the adsorptive/photocatalytic properties of hollow-spherical raspberry-like SnO2 and its SnO2/SnS2 heterostructures that were obtained via a chemical conversion method using three different concentrations of a sulfide precursor (thioacetamide). The adsorptive/photocatalytic properties of the samples towards cationic rhodamine B (RhB) and anionic indigo carmine (IC) were analyzed using uncommon wall zeta potential measurements, hydrodynamic diameter studies, and adsorption/photodecomposition tests. Moreover, after conducting cyclic experiments, we investigated the (micro)structural changes of the reused photocatalysts by scanning electron microscopy and Fourier-transform infrared spectroscopy. The obtained results revealed that the sensitization of SnO2 resulted not only in the significantly enhanced photocatalytic performance of the heterostructures, but also completely changed their affinity towards dyes. Furthermore, despite the seemingly best photocatalytic performance, the sample with the highest SnS2 content was unstable due to its (micro)structure. This work demonstrates that dye adsorption/desorption processes may overlap the results of cyclic photodecomposition kinetics.  相似文献   

2.

This present investigation focused on novel p-type bismuth ferrite (BiFeO3)/n-type tin sulfide (SnS2) heterostructure photocatalyst has been favorably attained via a facile two-step process followed by co-precipitation approach for enhances the photocatalytic activity through the degradation of Methylene Blue (MB) and Rhodamine B (RhB) organic dyes under visible-light illumination. Structural, optical, and photocatalytic behavior of the prepared BiFeO3 and BiFeO3/SnS2 photocatalysts are carefully explored. The photocatalytic efficiency of BiFeO3/SnS2 nanocatalyst was calculated to be 83%, 78% for MB and RhB, respectively, within 120 min illumination whereas the pure BiFeO3 nanoparticle was 58% and 56% for MB and RhB. This prominent enhancement of visible light photocatalytic activity can be ascribed to the separation as well as the transfer of photogenerated charge carriers, successful exploitation of visible light absorption and donates the enlarged number of photocatalytic active sites by the formation of BiFeO3/SnS2 p-n heterojunction.

  相似文献   

3.
Lithium–sulfur (Li–S) batteries have been recognized as outstanding candidates for energy storage systems due to their superiority in terms of energy density. To meet the requirements for practical use, it is necessary to develop an effective method to realize Li–S batteries with high sulfur utilization and cycle stability. Here, a strategy to construct heterostructure composites as cathodes for high performance Li–S batteries is presented. Taking the SnS2/SnO2 couple as an example, SnS2/SnO2 nanosheet heterostructures on carbon nanofibers (CNFs), named C@SnS2/SnO2, were designed and synthesized. Considering the electrochemical performance of SnS2/SnO2 heterostructures, it is interesting to note that the existence of heterointerfaces could efficiently improve lithium ion diffusion rate so as to accelerate the redox reaction significantly, thus leading to the enhanced sulfur utilization and more excellent rate performance. Benefiting from the unique structure and heterointerfaces of C@SnS2/SnO2 materials, the battery exhibited excellent cyclic stability and high sulfur utilization. This work may provide a powerful strategy for guiding the design of sulfur hosts from selecting the material composition to constructing of microstructure.  相似文献   

4.
Precise control of the micro‐/nanostructures of nanomaterials, such as hollow multi‐shelled structures (HoMSs), has shown its great advantages in various applications. Now, the crystal structure of building blocks of HoMSs are controlled by introducing the lattice distortion in HoMSs, for the first time. The lattice distortion located at the nanoscale interface of SnS2/SnO2 can provide additional active sites, which not only provide the catalytic activity under visible light but also improve the separation of photoexcited electron–hole pairs. Combined with the efficient light utilization, the natural advantage of HoMSs, a record catalytic activity was achieved in solid–gas system for CO2 reduction, with an excellent stability and 100 % CO selectivity without using any sensitizers or noble metals.  相似文献   

5.
Exploiting advanced photocatalysts under visible light is of primary significance for the development of environmentally relevant photocatalytic decontamination processes. In this study, the ionic liquid (IL), 1‐butyl‐3‐methylimidazolium tetrafluoroborate, was employed for the first time as both a structure‐directing agent and a dopant for the synthesis of novel fluorinated B/C‐codoped anatase TiO2 nanocrystals (TIL) through hydrothermal hydrolysis of tetrabutyl titanate. These TIL nanocrystals feature uniform crystallite and pore sizes and are stable with respect to phase transitions, crystal ripening, and pore collapse upon calcination treatment. More significantly, these nanocrystals possess abundant localized states and strong visible‐light absorption in a wide range of wavelengths. Because of synergic interactions between titania and codopants, the calcined TIL samples exhibited high visible‐light photocatalytic activity in the presence of oxidizing Rhodamine B (RhB). In particular, 300 °C‐calcined TIL was most photocatalytically active; its activity was much higher than that of TiO1.98N0.02 and reference samples (TW) obtained under identical conditions in the absence of ionic liquid. Furthermore, the possible photocatalytic oxidation mechanism and the active species involved in the RhB degradation photocatalyzed by the TIL samples were primarily investigated experimentally by using different scavengers. It was found that both holes and electrons, as well as their derived active species, such as .OH, contributed to the RhB degradation occurring on the fluorinated B/C‐codoped TiO2 photocatalyst, in terms of both the photocatalytic reaction dynamics and the reaction pathway. The synthesis of the aforementioned novel photocatalyst and the identification of specific active species involved in the photodegradation of dyes could shed new light on the design and synthesis of semiconductor materials with enhanced photocatalytic activity towards organic pollutants.  相似文献   

6.
Herein, a chemically bonded BiOBr–graphene composite (BiOBr–RG) was prepared through a facile in situ solvothermal method in the presence of graphene oxide. Graphene oxide could be easily reduced to graphene under solvothermal conditions, and simultaneously BiOBr nanoplates with pure tetragonal phase were grown uniformly on the graphene surface. The structure and photoelectrochemical properties of the resulting materials were characterized by transmission electron microscopy (TEM), X‐ray diffraction (XRD), Fourier‐transform infrared (FTIR) spectroscopy, Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and impedance and photocurrent action measurements. The combination of BiOBr and graphene introduces some properties of graphene into the photocatalysis reaction, such as excellent conductivity, adsorptivity, and controllability. A remarkable threefold enhancement in the degradation of rhodamine B (RhB) was observed with as‐prepared BiOBr–RG as compared with pure BiOBr under visible light (λ>420 nm). The enhanced photocatalytic activity could be attributed to the great adsorptivity of dyes, the extended photoresponse range, the negative shift in the Fermi level of BiOBr–RG, and the high migration efficiency of photoinduced electrons, which may effectively suppress the charge recombination.  相似文献   

7.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

8.
Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur–Ag–SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV–visible diffuse reflectance spectra (UV–vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag–SnO2 and Cur–Ag–SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur–Ag–SnO2 shows better photocatalytic activity than that of Ag–SnO2 and SnO2. The superior photocatalytic activity of Cur–Ag–SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur–Ag–SnO2 were tested.  相似文献   

9.
Three-dimensional Ag2O and Ag co-modified flower-like SnS2 composites have been synthesized through a facile hydrothermal and photoreduction process. The physical and chemical properties of Ag2O and Ag co-modified flower-like SnS2 composites were carefully studied by using XRD, SEM, TEM, UV–vis diffuse reflectance spectra (DRS) and XPS. The photocatalytic activity of the as-prepared products was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under solar light irradiation. The photocatalytic result shows that Ag2O and Ag co-modified flower-like SnS2 composites exhibit enhanced photocatalytic activity compared with that of pure SnS2. Three of the Ag2O and Ag co-modified flower-like SnS2 composites form the Z-scheme systems, because of their unique charge-carrier transfer process, the oxidation/reduction ability of photogenerated holes and electrons could be enhanced. Therefore, the new Ag2O and Ag co-modified flower-like SnS2 composites possess a favorable photocatalytic activity, and it can be a promising candidate for the solar energy conversion process.  相似文献   

10.
CeO2/Bi2WO6 heterostructured microsphere with excellent and stable photocatalytic activity for degradation tetracyclines was successfully synthesized via a facile solvothermal route. The photocatalytic experiments indicated that CeO2/Bi2WO6 heterostructured microspheres exhibited enhanced photocatalytic activity compared to pure Bi2WO6 in both the degradation of tetracycline hydrochloride (TCH) and rhodamine B (RhB) under visible‐light irradiation. The 1CeO2/2Bi2WO6 exhibited the best photocatalytic activity for degradation of TCH, reaching 91% after 60 min reaction. The results suggested that the particular morphological conformation of the microspheres resulted in smaller size and more uniform morphology so as to increase the specific surface area. Meanwhile, the heterojunction was formed by coupling CeO2 and Bi2WO6 in the as‐prepared microspheres, so that the separation efficiency of photogenerated electrons and holes was dramatically improved and the lifetimes of charge carriers were prolonged. Hence, introduction of CeO2 could significantly enhance the photocatalytic activity of CeO2/Bi2WO6 heterostructured microspheres and facilitate the degradation of TCH. This work provided not only a principle method to synthesize CeO2/Bi2WO6 with the excellent photocatalytic performance for actual produce, but also a excellent property of the photocatalyst for potential application in photocatalytic treatment of tetracyclines wastewater from pharmaceutical factory.  相似文献   

11.
Hierarchical macro‐/mesoporous N‐doped TiO2/graphene oxide (N‐TiO2/GO) composites were prepared without using templates by the simple dropwise addition mixed solution of tetrabutyl titanate and ethanol containg graphene oxide (GO) to the ammonia solution, and then calcined at 350 °C. The as‐prepared samples were characterized by scanning electron microscopy (SEM), Brunauer‐Emmett‐Teller (BET) surface area, X‐ray diffraction (XRD), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and UV‐Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange in an aqueous solution under visible‐light irradiation. The results show that N‐TiO2/GO composites exhibited enhanced photocatalytic activity. GO content exhibited an obvious influence on photocatalytic performance, and the optimal GO addition content was 1 wt%. The enhanced photocatalytic activity could be attributed to the synergetic effects of three factors including the improved visible light absorption, the hierarchical macro‐mesoporous structure, and the efficient charge separation by GO.  相似文献   

12.
A promising photocatalytic system in the form of heterostructured nanocrystals (HNCs) is presented wherein alloyed ZnS–CuInS2 (ZCIS) semiconductor nanorods are decorated with Pt and Pd4S nanoparticles. This is apparently the first report on the colloidal preparation and photocatalytic behavior of ZCIS–Pt and ZCIS–Pd4S nanoscale heterostructures. Incorporation of Pt and Pd4S cocatalysts leads to considerable enhancement of the photocatalytic activity of ZCIS for visible‐light‐driven hydrogen production.  相似文献   

13.
In this paper, a novel TiO2 nanosheets assembled double‐wall hollow sphere (DHS)has been prepared successfully via hydrothermal treatment of SiO2@TiO2 with the assistant of CTAB.The prepared samples are characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron spin resonance (ESR), X‐ray diffraction (XRD) and X‐ray photoelectron spectra (XPS), etc.Results show that redeposited silica species play a key role in the formation of the double‐wall structure. The as‐synthesized DHS nanostructure exhibits a large surface area (417.6 m2 g‐1) and excellent mechanical strength. Furthermore, after decoration of Ag and calcination treatment, the double‐shelled TiO2/Ag heterostructures show an enhanced photocatalytic performance in the degradation of RhB under UV or visible light irradiations for the following reasons: the surface plasmon resonance effect of Ag, strong interaction between Ag and TiO2 nanosheets, large surface area, excellent adsorption capacityand unique double‐wall structure. On the basis of the experimental results, a possible mechanism for pollutantdegradation under visual light irradiation has been proposed.  相似文献   

14.
Graphene possesses excellent conductivity, adsorptivity, and controllability. The combination of photocatalysts and graphene will introduce these properties of graphene into photocatalysis. In this paper, graphene oxide-Bi(2)WO(6) composite was firstly prepared via in situ hydrothermal reaction in the presence of graphene oxide, then the graphene oxide was reduced by ethylene glycol and the graphene-Bi(2)WO(6) (G-BWO) composite was formed. The as-prepared graphene-Bi(2)WO(6) photocatalyst shows enhanced photocatalytic activity for the degradation of rhodamine B (RhB) under visible light (λ > 420 nm). The electronic interaction and charge equilibration between graphene and Bi(2)WO(6) lead to the shift of the Fermi level and decrease the conduction band potential, which has an important influence on the photocatalytic process. The enhanced photocatalytic activity could be attributed to the negative shift in the Fermi level of G-BWO and the high migration efficiency of photoinduced electrons, which may suppress the charge recombination effectively.  相似文献   

15.
Silver ferrite–graphene (AgFeO2‐G) as a nanocomposite photocatalyst shows potent visible‐light photocatalytic activity for the degradation of organic contaminants, and generates the strong oxidants hydroxyl radical (OH) and superoxide anion radical (O2•−) via photoelectrochemical decomposition of H2O and O2 in the presence of air and visible light irradiation. The photogenerated electrons of AgFeO2 can transfer easily from the conduction band to the reduced graphene oxide, efficiently preventing the direct recombination of electrons and holes. As a matter of fact, AgFeO2 has a low bandgap. Furthermore, AgFeO2 nanoparticles themselves have a magnetic property, which makes them magnetically separable. The experimental results show that the graphene nanosheets in the nanocomposite catalyst are exfoliated and decorated homogeneously with AgFeO2 nanoparticles. The photodegradation occurs in a short time (ca 40 min). Also, the photocatalytic activity of the nanocomposite does not show any clear loss after ten recycles of the degradation process.  相似文献   

16.
A novel Cs0.33WO3/LDHs (CWLDH) composite was synthesized by simple two steps solvothermal method and first investigated as the photocatalyst for tetracycline (TC) and Congo red (CR) degradation under visible light irradiation. The CWLDH heterostructures catalysts were characterized by XRD, UV–Vis, SEM, XPS and BET. The composite CWLDH showed enhanced photocatalytic activity compared with pure Cs0.33WO 3 and NiAl‐LDH under identical experimental conditions. The enhanced photocatalytic activity was mainly attributed to the higher visible light‐absorbing ability, efficient electron–hole separation and prolonged lifetimes of photogenerated charges. The photocatalyst presented a high photocatalytic activity (92%) at the optimum of CWLDH ‐3 and initial TC concentration of 40 mg L−1. Besides, the degradation efficiency of TC is higher than 75% for reused CWLDH after four cycles, demonstrating that it could be used as a potential catalyst with good photocatalytic activity, stability and reusability. According to the experimental results, a possible photocatalytic mechanism of CWLDH was discussed.  相似文献   

17.
Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these daunting photocatalytic requirements. Electrochemical techniques were employed to elucidate the mechanics of plasmon‐mediated electron transfer within Au/TiO2 heterostructures under visible‐light (λ>515 nm) irradiation in solution. Significantly, we discovered that these transferred electrons displayed excited‐state lifetimes two orders of magnitude longer than those of electrons photogenerated directly within TiO2 via UV excitation. These long‐lived electrons further enable visible‐light‐driven H2 evolution from water, heralding a new photocatalytic paradigm for solar energy conversion.  相似文献   

18.
SnO2–TiO2/fly ash cenospheres (FAC) were prepared via hydrothermal method and used as an active photocatalyst in a photocatalytic system. Scanning electron microscopy, X‐ray diffraction analysis, UV–Vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy and N2 adsorption–desorption measurements were used to determine the structure and optical property of SnO2–TiO2/FAC. Phenol was selected as the model substance for photocatalytic reactions to evaluate catalytic ability. Results showed that the degradation efficiency of phenol by SnO2–TiO2/FAC was 90.7% higher than that decomposed by TiO2/FAC. Increased efficiency could be due to the enhanced synergistic effect of semiconductors and FAC could provide more adsorption sites for the pollutant in the photocatalytic reaction. Furthermore, SnO2–TiO2/FAC composites exhibited excellent photocatalytic stability in four reuse cycles. Radical‐trapping experiments further revealed the dominating functions of holes in the photocatalytic reaction.  相似文献   

19.
Au/TiO2/graphene composite was synthesized by the combination of electrostatic attraction and photo-reduction method. In the composite, graphene sheets act as an adsorption site for dye molecules to provide a high concentration of dye near to the TiO2 and Au nanoparticles (NPs), and work as an excellent electron transporter to separate photoinduced e ?/h + pairs. Under UV irradiation, photogenerated electrons of TiO2 are transferred effectively to Au NPs and graphene sheets, respectively, retarding the recombination of electron–hole pairs. Under visible light irradiation, the Au NPs are photo-excited due to the surface plasmon resonance effect, and charge separation is accomplished by the interfacial electron injection from the Au NPs to the conduction band of TiO2 and then transfer further to graphene sheets. As a result, compared with pure TiO2, Au/TiO2/graphene composite exhibited much higher photocatalytic activity for degradation of methylene blue under both UV and visible light irradiation, based on the synergistic effect of Au, graphene in contact with TiO2, allowing response to the visible light, effective separation of photoinduced charges, and better adsorption of the dye molecules.  相似文献   

20.
Precise control of the micro-/nanostructures of nanomaterials, such as hollow multi-shelled structures (HoMSs), has shown its great advantages in various applications. Now, the crystal structure of building blocks of HoMSs are controlled by introducing the lattice distortion in HoMSs, for the first time. The lattice distortion located at the nanoscale interface of SnS2/SnO2 can provide additional active sites, which not only provide the catalytic activity under visible light but also improve the separation of photoexcited electron–hole pairs. Combined with the efficient light utilization, the natural advantage of HoMSs, a record catalytic activity was achieved in solid–gas system for CO2 reduction, with an excellent stability and 100 % CO selectivity without using any sensitizers or noble metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号