首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We provide mathematical justification of the emergence of large‐scale coherent structure in a two‐dimensional fluid system under small‐scale random bombardments with small forcing and appropriate scaling assumptions. The analysis shows that the large‐scale structure emerging out of the small‐scale random forcing is not the one predicted by equilibrium statistical mechanics. But the error is very small, which explains earlier successful prediction of the large‐scale structure based on equilibrium statistical mechanics. © 2005 Wiley Periodicals, Inc.  相似文献   

3.
4.
Combining pointwise Green's function bounds obtained in a companion paper [36] with earlier, spectral stability results obtained in [16], we establish nonlinear orbital stability of small‐amplitude Lax‐type viscous shock profiles for the class of dissipative symmetric hyperbolic‐parabolic systems identified by Kawashima [20], notably including compressible Navier‐Stokes equations and the equations of magnetohydrodynamics, obtaining sharp rates of decay in Lp with respect to small L1H3 perturbations, 2 ≤ p ≤ ∞. Our analysis extends and somewhat refines the approach introduced in [35] to treat stability of relaxation profiles. © 2004 Wiley Periodicals, Inc.  相似文献   

5.
The structure of interaction plays an important role in the outcome of evolutionary games. This study investigates the evolution of stochastic strategies of the prisoner's dilemma played on structures ranging from lattices to small world networks. Strategies and payoffs are analyzed as a function of the network characteristics of the node they are playing on. Nodes with lattice‐like neighborhoods tend to perform better than the nodes modified during the rewiring process of the construction of the small‐world network. © 2007 Wiley Periodicals, Inc. Complexity 12:22–36, 2006  相似文献   

6.
The Push‐Pull protocol is a well‐studied round‐robin rumor spreading protocol defined as follows: initially a node knows a rumor and wants to spread it to all nodes in a network quickly. In each round, every informed node sends the rumor to a random neighbor, and every uninformed node contacts a random neighbor and gets the rumor from her if she knows it. We analyze the behavior of this protocol on random ‐trees, a class of power law graphs, which are small‐world and have large clustering coefficients, built as follows: initially we have a ‐clique. In every step a new node is born, a random ‐clique of the current graph is chosen, and the new node is joined to all nodes of the ‐clique. When is fixed, we show that if initially a random node is aware of the rumor, then with probability after rounds the rumor propagates to nodes, where is the number of nodes and is any slowly growing function. Since these graphs have polynomially small conductance, vertex expansion and constant treewidth, these results demonstrate that Push‐Pull can be efficient even on poorly connected networks. On the negative side, we prove that with probability the protocol needs at least rounds to inform all nodes. This exponential dichotomy between time required for informing almost all and all nodes is striking. Our main contribution is to present, for the first time, a natural class of random graphs in which such a phenomenon can be observed. Our technique for proving the upper bound successfully carries over to a closely related class of graphs, the random ‐Apollonian networks, for which we prove an upper bound of rounds for informing nodes with probability when is fixed. Here, © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 49, 185–208, 2016  相似文献   

7.
We present a new technique for proving logarithmic upper bounds for diameters of evolving random graph models, which is based on defining a coupling between random graphs and variants of random recursive trees. The advantage of the technique is three‐fold: it is quite simple and provides short proofs, it is applicable to a broad variety of models including those incorporating preferential attachment, and it provides bounds with small constants. We illustrate this by proving, for the first time, logarithmic upper bounds for the diameters of the following well known models: the forest fire model, the copying model, the PageRank‐based selection model, the Aiello‐Chung‐Lu models, the generalized linear preference model, directed scale‐free graphs, the Cooper‐Frieze model, and random unordered increasing k‐trees. Our results shed light on why the small‐world phenomenon is observed in so many real‐world graphs. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 201–224, 2017  相似文献   

8.
By establishing a new estimate of the solutions for the small‐divisor equation with large variable coefficients and using the KAM technique, we prove a reduction theorem that entails the pure point nature of the Floquet spectrum of the quantum Duffing oscillator with a small perturbation temporal quasi‐periodic with nonresonant frequencies. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Stochastic averaging principle is a powerful tool for studying qualitative analysis of multiscale stochastic dynamical systems. In this paper, we will establish an averaging principle for stochastic reaction‐diffusion‐advection equations with slow and fast time scales. Under suitable conditions, we show that the slow component strongly converges to the solution of the corresponding averaged equation.  相似文献   

10.
In this paper we consider the state of plane strain in an elastic material with voids occupying a curvilinear strip as an arch‐like region described by R: a<r<b, 0<θ<ω, where r and θ are polar coordinates and a, b, and ω (<2π) are prescribed positive constants. Such a curvilinear strip is maintained in equilibrium under self‐equilibrated traction and equilibrated force applied on one of the edges, whereas the other three edges are traction free and subjected to zero volumetric fraction or zero equilibrated force. In fact, we study the case when one right or curved edge is loaded. Our aim is to derive some explicit spatial estimates describing how some appropriate measures of a specific Airy stress function and volume fraction evolve with respect to the distance to the loaded edge. The results of the present paper prove how the spatial decay rate varies with the constitutive profile. For the problem corresponding to a loaded right edge, we are able to establish an exponential decay estimate with respect to the angle θ. Whereas for the problem corresponding to a loaded curved edge, we establish an algebraical spatial decay with respect to the polar distance r, provided the angle ω is lower than the critical value $\pi\sqrt{2}$. The intended applications of these results concern various branches of medicine as for example the bone implants. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The motion of a mass point in the gravitational field of two bodies traveling along arbitrary orbits about their center of mass is considered. The mass ratio of the two bodies is equal to ε?1. When the mass point passes close to the smaller mass, the character of its trajectory changes abruptly, and the trajectory asymptotics as ε→0 is complex. The uniform asymptotic expansion of the entire trajectory up to any power of ε is constructed and justified. In particular, an algorithm is presented for finding the limiting turning angle of the trajectory after the mass point passes a neighbourhood of the smaller mass. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
We destroy a finite tree of size n by cutting its edges one after the other and in uniform random order. Informally, the associated cut‐tree describes the genealogy of the connected components created by this destruction process. We provide a general criterion for the convergence of the rescaled cut‐tree in the Gromov‐Prohorov topology to an interval endowed with the Euclidean distance and a certain probability measure, when the underlying tree has branching points close to the root and height of order . In particular, we consider uniform random recursive trees, binary search trees, scale‐free random trees and a mixture of regular trees. This yields extensions of a result in Bertoin (Probab Stat 5 (2015), 478–488) for the cut‐tree of uniform random recursive trees and also allows us to generalize some results of Kuba and Panholzer (Online J Anal Combin (2014), 26) on the multiple isolation of vertices. The approach relies in the close relationship between the destruction process and Bernoulli bond percolation, which may be useful for studying the cut‐tree of other classes of trees. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 404–427, 2017  相似文献   

13.
In an earlier paper 3 , we studied cycles in graphs that intersect all edge‐cuts of prescribed sizes. Passing to a more general setting, we examine the existence of T‐joins in grafts that intersect all edge‐cuts whose size is in a given set A ?{1,2,3}. In particular, we characterize all the contraction‐minimal grafts admitting no T‐joins that intersect all edge‐cuts of size 1 and 2. We also show that every 3‐edge‐connected graft admits a T‐join intersecting all 3‐edge‐cuts. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 64–71, 2007  相似文献   

14.
It is well known that many random graphs with infinite variance degrees are ultra‐small. More precisely, for configuration models and preferential attachment models where the proportion of vertices of degree at least k is approximately k?(τ ? 1) with τ ∈ (2,3), typical distances between pairs of vertices in a graph of size n are asymptotic to and , respectively. In this paper, we investigate the behavior of the diameter in such models. We show that the diameter is of order precisely when the minimal forward degree dfwd of vertices is at least 2. We identify the exact constant, which equals that of the typical distances plus . Interestingly, the proof for both models follows identical steps, even though the models are quite different in nature.  相似文献   

15.
We consider the mass‐in‐mass (MiM) lattice when the internal resonators are very small. When there are no internal resonators the lattice reduces to a standard Fermi‐Pasta‐Ulam‐Tsingou (FPUT) system. We show that the solution of the MiM system, with suitable initial data, shadows the FPUT system for long periods of time. Using some classical oscillatory integral estimates we can conclude that the error of the approximation is (in some settings) higher than one may expect.  相似文献   

16.
We study the proof‐theoretic strength of the Π11‐separation axiom scheme, and we show that Π11‐separation lies strictly in between the Δ11‐comprehension and Σ11‐choice axiom schemes over RCA0. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The perturbed wave equation □u + q(x)u = 0 in R3 × R with C∞ (R3) compactly supported initial data at t = 0 is considered. It is proven that the Huygens' principle does not hold for this equation if the potential is (essentially) non-negative, well-behaved at infinity and small in a suitable sense. The treatment is elementary and based on energy estimates and the positivity of the Riemann function for the wave equation in three space dimensions. The result still holds if the solution u is “small” over some space-time propagation cone. In the ease in which q has compact support, stronger results of this type for the above equation are obtained.  相似文献   

18.
Biologic characteristics of schooling fish species explain why the rates of harvesting in pelagic fisheries are not proportional to the existent stock size and may exhibit no variation between the periods of fish abundance and scarcity. Therefore, the stock‐dependent nonlinearities in catchability must be reflected in the design of flexible fishing policies, which target the sustainable exploitation of this important natural resource. In this study, such nonlinearities are expressed through eventual variability of the “catch‐to‐stock” parameter that measures the sensitivity of an additional catch yield to marginal changes in the fish‐stock level. Using the optimal control modeling framework, we establish that each value of the “catch‐to‐stock” parameter generates a unique steady‐state size of the fish stock and the latter engenders an optimal fishing policy that can be sustained as long as the “catch‐to‐stock” parameter remains unchanged. We also prove the continuous dependence of the steady‐state stock and underlying fishing policy upon the mentioned “catch‐to‐stock” parameter and then focus on the analysis of the equilibrium responses to changes in this parameter induced by external perturbations. Recommendations for Resource Managers
  • Marginal catches of pelagic fish stocks do not react in a linear way to changes in existing stock level, and the latter is captured in our model by the “catch‐to‐stock” parameter . Each observable value of engenders a unique steady‐state stock size that defines an optimal fishing policy, which can be sustained as long as remains unchanged.
  • The ability of fishery managers to detect variations in the levels of hyperstability expressed by the “catch‐to‐stock” parameter may help them to anticipate new equilibrium responses in stock evolution and to make timely adjustments in the fishing policy.
  • Plausible estimations of the “catch‐to‐stock” parameter , as well as detection of its possible alterations, can be carried out within the framework of Management Strategy Evaluation (MSE) approach where different data collected inside and outside the fishery are contrasted via the validation of a relatively simple decision‐making model (presented in this paper) coupled with other “operation models” of higher complexity.
  • If the “catch‐to‐stock” parameter cannot be reasonably assessed (), the fishery managers may rely upon the lower bound of stationary stock size, which depends on economic and biological factors (such as the present and future economic values of the exploited fish stock, its marginal productivity, and underlying dynamics of biological growth).
  相似文献   

19.
Although STEM is at the forefront of many educational initiatives, little is known about various professionals’ perceptions of STEM. This mixed‐methods study surveyed 164 preservice teachers, inservice teachers, administrators, informal educators, and STEM professionals. Quantitative and qualitative questions on the survey elicited participants’ perceptions of STEM, STEM support, and STEM careers. Quantitative analysis revealed that profession influenced understandings of STEM, importance of STEM, support for STEM, and perceptions of STEM career opportunities. Qualitative analysis provided rich explanations for the differences in perceptions among professions. This study suggests that science teacher educators need to ensure preservice teachers have understandings of STEM and STEM careers, K‐16 educators need to emphasize the current importance of STEM, and administrators and policymakers need to align visions of STEM with curriculum and pacing guides so teachers feel supported in their STEM endeavors.  相似文献   

20.
The aim of this paper is to establish a continuation principle for strong solutions to the full compressible magnetohydrodynamic system without resistivity and heat conductivity. We prove that if the solution loses its regularity in finite time, the dominated part is due to the hyperbolic effect. More precisely, it is essentially shown that the strong solution exists globally if the density, temperature, and magnetic field are bounded from above, where vacuum is allowed to exist. This verifies a problem proposed by D.Serre. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号